跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐貴園
研究生(外文):Hsu, Kuei-Yuan
論文名稱:降低寄生元件效應的固定導通時間控制於使用陶瓷電容的降壓電源轉換器
論文名稱(外文):Reduction of Parasitic Component Effect in Constant On-Time Control for Buck Converter with Multi-layer Ceramic Capacitors
指導教授:陳科宏陳科宏引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院電機與控制學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:50
中文關鍵詞:寄生元件固定導通時間控制陶瓷電容降壓電源轉換器
外文關鍵詞:Parasitic ComponentConstant On-Time ControlMLCCBuck Converter
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1523
  • 評分評分:
  • 下載下載:404
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著可攜式產品的需求逐漸增加,用來提供可攜式產品系統電源且具有小體積以及高效能的電壓穩壓器變得越來越重要。實際應用中固定導通時間控制法的電壓穩壓器常被使用,因為具有幾項優點,如系統結構簡單、快速暫態反應,以及在輕負載時具有高效率的優點。一般來說,固定導通時間控制法的穩壓器是利用輸出端訊號的漣波來穩壓,基本上須使用較大等效串聯電阻的輸出電容才可有效控制系統。由於低成本的優勢,積層陶瓷電容目前被廣泛的使用於消費性電源管理晶片,但是積層陶瓷電容的等校串聯電阻卻很小。在傳統的控制法使用具有小等效串聯電阻的輸出電容時,由於輸出端訊號的漣波幾乎僅有電容的成分,故漣波很小系統易受雜訊影響。
因此,本文提出新的固定導通時間控制法電壓穩壓器架構,可提高雜訊容限寬度,可消除輸出電容上的等效串聯電感及小等效串聯電阻效應。並且由於導通時間可隨輸入及輸出電壓調整,操作在連續導通模式時的系統切換頻率可以在廣泛的輸入電壓裡維持幾乎定值。模擬結果顯示出輸出電壓漣波維持約 2mV,在負載變動範圍為0到600mA 時。此時使用的等效串聯電阻小於5mΩ。

In recent years, with the increasing demand of portable products, used to provide system power of portable products with small size and high performance voltage regulator becomes more and more important. Constant on-time control regulators are preferred in practice for several important advantages, such as simple system structure, fast response time and high efficiency for light load. In general, constant on-time control regulators regulate their output voltage based on the ripple component in the output signal. Basically, requires the use of large equivalent series resistance (ESR) of the output capacitance can be effectively controlled system. As a low-cost advantage, multilayer ceramic capacitors (MLCC) are widely used in consumer power management chip, but its equivalent series resistance is very small.
In conventional constant on-time control with small ESR value on the output capacitor, the regulator is easily affected by the noise due to small output ripple, which is dominated by the ripple on the output capacitor.
Therefore, this paper proposes new constant on-time control regulator structure can improve the noise margin, to eliminate the equivalent in series inductance (ESL) and the small equivalent series resistance (ESR) effect. Furthermore, since the on-time period is set simply by input and output voltages, the switching frequency in continuous conduction mode (CCM) operation is relatively constant over a wide input voltage range. Simulation results show that the output ripple keeps around 2mV, when load current step is 600mA and ESR is smaller than 5mΩ.
Chapter 1 1
Introduction 1
1.1 Background of Regulators 1
1.2 Categorization of Power Supply Circuit 2
1.2.1 Linear Regulators 2
1.2.2 Charge Pump 4
1.2.3 Switching Regulators 5
1.3 Design Motivation 9
1.4 Thesis Organization 10
Chapter 2 11
Basic Definition Principles of DC-DC Buck Converters 11
2.1 General Specifications 11
2.1.1 Line Regulation 11
2.1.2 Load Regulation 11
2.1.3 Transient Response 12
2.2 Losses and Efficiency Analysis 15
2.2.1 Quiescent Loss 15
2.2.2 Switching Loss 15
2.2.3 Conduction Loss 16
2.2.4 Efficiency 17
Chapter 3 18
Output-Ripple-Based Control of Switching Converter 18
3.1 Introduction of Output-Ripple-Based Control 18
3.2 Hysteretic Mode Control 20
3.3 Constant Off-Time Control 22
3.4 Constant On-Time Control 23
Chapter 4 26
Constant On-Time Control with Increase Noise Margin Technology 26
4.1 Conventional Constant On-Time Control Buck Converter 26
4.1.1 On-Time Control 29
4.1.2 Analysis Stability Criteria of Constant On-Time Control 30
4.2 Proposed Constant On-Time Control Buck Structure 33
Chapter 5 37
Circuit Implementation 37
5.1 The Circuit of Increase Noise Margin Technology 37
Chapter 6 40
Simulation Results, Conclusions and Future Work 40
6.1 Simulation Results 40
6.2 Conclusions 46
6.3 Future Work 46
Reference 47
[1] D. Maksimovic, “Power management model and implementation of power management ICs for next generation wireless applications,” Tutorial presented at the International Conference on Circuits and System (ISCAS), 2002.
[2] Hong-Wei Huang, Chia-Hsiang Lin, and Ke-Horng Chen, “Low-Dropout Regulators with Adaptive Reference Control and Dynamic Push-Pull Techniques for Enhancing Transient Performance,” the 34th European Solid-State Circuits Conference (ESSCIRC), Sep. 2008.
[3] Huan-JenYang, Han-Hsiang Huang, Chi-Lin Chen, Ming-Hsin Huang, and Ke-Horng Chen, “Current Feedback Compensation (CFC) Technique for Adaptively Adjusting the Phase Margin in Capacitor-Free LDO Regulators,” 51th IEEE Int'l Midwest Symposium on Circuits & Systems, Aug. 2008.
[4] Yung-Hsin Lin, Kuo-Lin Zheng, and Ke-Horng Chen, “Power MOSFET Array for Smooth Pole Tracking in LDO Regulator Compensation,” 50th IEEE Int'l Midwest Symposium on Circuits & Systems/5th IEEE Int'l Northeast Workshop on Circuits & Systems, pp. 554-557, Aug. 2007.
[5] P. Favrat, P. Deval and M. J. Declercq, ”A high-efficiency CMOS voltage doubler,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 410-416, March 1998.
[6] Starzyk, J.A, Ying-Wei Jan and Fengjing Qiu, “A DC-DC charge pump design based on voltage doublers,” IEEE Trans. Circuits and Systems I, vol. 48, pp. 350-359, Mar. 2001.
[7] Chun-Yu Hsieh, Po-Chin Fan and Ke-Horng Chen, “A Dual Phase Charge Pump with Compact Size,” the 14th IEEE International Conference on Electronics, Circuits and Systems, pp.202-205, Dec., 2007.
[8] Yean-Kuo Luo, Ke-Horng Chen, and Wei-Chou Hsu, “A Dual-Phase Charge Pump Regulator with Nano-Ampere Switched-Capacitor CMOS Voltage Reference for Achieving Low Output Ripples,” the 15th IEEE International Conference on Electronics, Circuits and Systems, Sep., 2008.
[9] Cheung Fai Lee, Philip K. T. “A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current-Sensing Technique,”. IEEE J. Solid-State Circuits. vol. 39, pp.3-13, Jan. 2004.
[10] Chi Yat Leung, Philip K.T. Mok, “A 1-V Integrated Current-Mode Boost Converter in Standard 3.3/5-V CMOS Technologies,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, Nov. 2005.
[11] Ming-Hsin Huang, Ke-Horng Chen, and Wei-Hsin Wei “Single-Inductor Dual-Output DC-DC Converters with High Light-Load Efficiency and Minimized Cross-Regulation for Portable Devices,” IEEE VLSI-Symposium on Technology and Circuits, June, 2008.
[12] Hong-Wei Huang, Hsin-Hsin Ho, Chieh-Ching Chien, Ke-Horng Chen, Gin-Kou Ma, and Sy-Yen Kuo, “Dithering Skip Modulator with a Width Controller for Ultra-wide-load High-Efficiency DC-DC Converters,” 2006 IEEE Custom Integrated Circuits Conference (CICC), Sep. 10-13, 2006.
[13] Yu-Huei Lee, Shih-Jung Wang, Chun-Yu Hsieh, and Ke-Horng Chen, “Current Mode DC-DC Buck Converters with Optimal Fast-Transient Control,” in Proc. IEEE Int. Symp. Circuits Syst., May. 2008.
[14] J. Korn, “DC voltage stabilizer with two-point regulation (original in German, “Gleichspannungskonstanthalter mit Zweipunktregelung”),” ETZ-A, vol. 83, no. 12, pp. 395-401, Jul. 1962.
[15] B. P. Schweitzer and A. B. Rosenstein, “Free running switching mode power regulator: Analysis and design,” IEEE Trans. Aerosp., vol. AS-2, no.4, pp. 1171-1180, Oct. 1964.
[16] J. Sun, “Characterization and performance comparison of ripple-based control methods for voltage regulator modules,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 346–353, Mar. 2006.
[17] Richard Redl and Jian Sun, “Ripple-Based Control of Switching Regulators, An Overview,” IEEE Trans. Power Electron., vol. 24, no. 12, Dec. 2009.
[18] Hong-Wei Huang, Chun-Yu Hsieh, Ke-Horng Chen, and Sy-Yen Kuo, “Adaptive Frequency Control Technique for Enhancing Transient Performance of DC-DC Converters,” the 33rd European Solid-State Circuits Conference (ESSCIRC), pp. 174-177, Sep. 2007.
[19] Hong-Wei Huang, Hsin-Hsin Ho, Chieh-Ching Chien, Ke-Horng Chen, Gin-Kou Ma, and Sy-Yen Kuo, “Fast Transient DC-DC Converter with On-Chip Compensated Error Amplifier,” the 32nd European Solid-State Circuits Conference (ESSCIRC), pp. 324-327, Sep. 2006.
[20] Ke-Horng Chen, Hong-Wei Huang, and Sy-Yen Kuo, “Fast Transient DC-DC Converter with On-Chip Compensated Error Amplifier,” in IEEE Transactions on Circuits and Systems II, pp. 1150-1154, Dec. 2007.

[21] Ke-Horng Chen, Hong-Wei Huang, and Sy-Yen Kuo, “Fast Transient DC-DC Converter with On-Chip Compensated Error Amplifier,” in IEEE Transaction on Circuits and Syst. II, pp. 1150-1154, Dec. 2007.
[22] Y.-H. Lee, S.-J. Wang and K.-H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829–838, Apr. 2010.
[23] Y. Y. Mai and P. K. T. Mok, “A constant frequency output-ripple-voltagebased buck converter without using larger ESR capacitor,” IEEE Trans. Circuit Syst. II, Exp. Briefs, vol. 55, no. 8, pp. 748–752, Aug. 2008.
[24] C.-J. Chen, D. Chen, C.-W. Tseng, C.-T. Tseng, Y.-W. Chang, K.-C. Wang, “A novel ripple-based constant on-time control with virtual inductor current ripple for Buck converter with ceramic output capacitors,” in Proc. IEEE APEC, 2011, pp. 1488–1493.
[25] B. Sahu, G.A. Rincon-Mora, "An Accurate, Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control," IEEE Trans. Circuits Syst. I, vol. 54, No. 2, pp.312 - 321, Feb. 2007.
[26] C.-H. Tso and J.-C.Wu, “A ripple control buck regulator with fixed output frequency,” IEEE Power Electron. Lett., vol. 1, no. 3, pp. 61–63, Sep. 2003.
[27] K. Lee, F. C. Lee, and M. Xu, “Novel hysteretic control method for multiphase voltage regulators,” in Proc. IEEE APEC, 2008, pp. 1508– 1514.
[28] F. Wang, J. Xu, and B. Wang, “Comparison study of switching DC–DC converter control techniques,” in Proc. IEEE Int. Conf. Commun. Circuits Syst., Jun. 2006, vol. 4, pp. 2713–2717.
[29] Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell, MA: Kluwer Academic Publishers, 2001.
[30] Richard Red1 and Gabor Reizik, “Switched Noise Filter For the Buck Converter Using
the Output Ripple as the PWM Ramp,” in Applied Power Electronics Conference and
Exposition, 2005, vol. 2, pp. 918 – 924.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top