跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施銘杰
研究生(外文):Ming-Chieh Shih
論文名稱:利用結構方程模式進行網絡統合分析:模型建構、不一致性評估與稀少資料分析
論文名稱(外文):Evaluation of Network Meta-analysis Using Structural Equation Modeling: Model Construction, Inconsistency Assessment and Sparse Data Analysis
指導教授:杜裕康杜裕康引用關係
指導教授(外文):Yu-Kang Tu
口試委員:陳錦華蕭朱杏林先和李文宗
口試委員(外文):Jin-Hua ChenChu-Hsing HsiaoHsien-Ho LinWen-Chung Lee
口試日期:2018-07-10
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:流行病學與預防醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:246
中文關鍵詞:網絡統合分析結構方程模式多變量分析不一致性稀少資料
相關次數:
  • 被引用被引用:0
  • 點閱點閱:947
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
網絡統合分析(Network meta-analysis)能夠結合直接與間接證據,以比較多種治療的相對效益或危害。結構方程模式(Structural equation modeling)則是一種探討多個觀察變數和潛在變數的統計方法。先前的研究顯示網絡統合分析中的Lu-Ades模型可應用於結構方程模式。然而,Lu-Ades模型乃以治療之間的差異(contrast)作為分析單位的差異參數化模型(contrast-parameterized model),因此不僅會引入差異之間的相關性,也帶來資料輸入和模型建構的麻煩。

在本篇博士論文中,我們提出了如何在結構方程模式中,直接以各治療的結果為分析單位,即臂參數化模型(arm-parameterized model),來進行網絡統合分析。其中我們發現臂參數化模型會引入過多固定效應參數而造成附帶參數問題(incidental parameter problem),因此使用積分的方式將參數消除。我們說明了如何將採用受試者內設計(within person design)的研究納入臂參數化模型分析。另外,在臂參數化模型的架構下,傳統統合分析的新估計方法「無限制加權最小平方法(unrestricted weighted least squares)」可以輕易地推廣到網絡統合分析。

而後,我們利用發展的模型佐以結構方程模式的多群組分析(multiple group analysis)來探討網絡統合分析的不一致性(inconsistency),包括全域不一致性(global inconsistency)以及直接-間接證據不一致性(direct-indirect evidence inconsistency)。全域不一致性可在結構方程模式中以設計不一致性模型(design inconsistency model)評估。直接-間接證據不一致性則再被細分為設計導向及資訊導向兩種分析方式。為了瞭解設計導向直接-間接證據不一致性的結構,我們定義了證據網絡圖及證據比較圖,並根據這兩種圖提出臂基準不一致模型(arm-parameterized inconsistency model)。該模型能夠統合當前所有評估直接-間接證據不一致性的模型。在資訊導向直接-間接證據不一致性方面,我們提出了證據裂解模型(evidence-splitting model),並證明該模型是當前唯一能夠正確反映「直接比較證據」與「網絡統合分析中的其他證據」差異的模型。其中,證據裂解模型的參數關係較特殊,因此只有在結構方程模式才能正確估計。

最後,我們試圖了解當今網絡統合分析的估計方法在稀少資料下的表現。此處稀少資料指事件發生機率低的二元結果資料。經模擬發現,頻率學派常用的經驗勝算比(empirical odds ratio)在事件發生機率低時會出現嚴重偏誤。綜合偏誤、型一錯誤及檢力表現,階層廣義線性模型(hierarchical generalized linear model)是最佳的稀少資料估計法。而就我們提出的臂參數化模型而言,只要各治療效果差異不大,可使用我們自傳統統合分析Peto勝算比延伸出的多變量Peto勝算比來分析。另外,為解決Peto勝算比估計值受到各治療組別人數比例的問題,我們進一步提出中心化Peto勝算比,並發現該估計法可在各治療組別人數比例不均等的狀況下降低一部份偏誤。

利用結構方程模式估計臂參數化模型的彈性甚高。除了可以適應各種模型假設,亦可評估網絡統合分析的重要面向,例如不一致性。綜上所述,結構方程模式具有成為網絡統合分析標準評估工具的潛力。
Network meta-analysis is a crucial tool to combine direct and indirect evidence to compare the efficacy and harm between several treatments. Structural equation modeling is a statistical method that investigates relations among observed and latent variables. Previous studies have shown that the contrast-based Lu-Ades model for network meta-analysis can be implemented in the structural equation modeling framework. However, the Lu-Ades model uses the difference between treatments as the unit of analysis, thereby introducing correlations between observations and rendering data entry and model building a complex task.

In this PhD thesis, we first demonstrated how to undertake network meta-analysis in structural equation modeling using the outcome of treatment arms as the unit of analysis (arm-parameterized model). As arm-parameterized model may introduce too many fixed effect parameters, leading to the incidental parameter problem, which could be resolved using parameter elimination via integration. We also showed that our models can include trials of within-person designs without the need for complex data manipulation. In addition, a novel approach to meta-analysis, the unrestricted weighted least squares, can be readily extended to network meta-analysis under our statistical framework.

Based on the structural equation model we developed, we used multiple group analysis to evaluate inconsistency within network meta-analysis. We assessed two types of inconsistency: global inconsistency and direct-indirect evidence inconsistency. Global inconsistency was evaluated using the design inconsistency model, which can be constructed elegantly in structural equation modeling. Direct-indirect evidence inconsistency was further categorized into two approaches: design-oriented and information-oriented. For the design-oriented direct-indirect evidence inconsistency, we proposed two graphs, evidence network graphs and evidence comparison graph, to explore its structure. Based on the graph, we proposed an arm-parameterized inconsistency model that unifies current approaches to inconsistency evaluation. For the information-oriented direct-indirect evidence inconsistency, we proposed a series of evidence splitting models and showed that our model was the only model to truly reflect the difference between the direct information for the contrast of interest and the rest of the evidence network. These evidence splitting models requires flexible parameterizations and are estimable only in structural equation modeling.

Finally, we set out to evaluate the performance of various estimation approaches for network meta-analysis under the sparse data scenario, i.e. when the event probability was low for binary data. Simulations revealed that the conventional empirical odds ratio, which is commonly used frequentist packages for network meta-analysis, suffered from severe bias toward the null under low event probability. Of all the current estimation methods, hierarchical generalized linear model was the most robust approach in terms of bias, control of type I error rate and power. For our structural equation modeling framework, the multivariate Peto odds ratio, which is an extension of Peto odds ratio in conventional meta-analysis, performed well when the effect size was not too large. We also proposed a centered multivariate Peto odds ratio whose estimates does not depend on the relative sample size of each treatment and can partly alleviate the bias under the scenario of unequal patient allocation across treatment arms.

In conclusion, arm-parameterized model in structural equation modeling provides an extremely flexible framework for network meta-analysis, which can adapt to various model assumptions and assess their adequacy in network meta-analysis, such as inconsistency. Therefore, structural equation modeling has the potential to become a standard tool for network meta-analysis.
口試委員審定書 i
誌謝 iii
摘要 v
Abstract vii
Contents xi
Contents of Figures xiv
Contents of Tables xviii
Chapter 1 Introduction 1
1.1 Meta-analyses 1
1.2 Network meta-analyses 3
1.3 Structural equation modeling 6
1.4 Inconsistency in network meta-analyses 8
1.5 Aim 9
Chapter 2 Literature Review 11
2.1 General backbone model of network meta-analyses 11
2.2 Implementation of network meta-analysis in structural equation modeling 15
2.3 Current inconsistency evaluation methods 20
2.3.1 Evaluation methods for global inconsistency 21
2.3.2 Evaluation methods for direct-indirect evidence inconsistency 30
2.4 Current estimation methods for network meta-analyses 41
2.4.1 Bayesian inference 41
2.4.2 Frequentist inference 43
2.4.3 Frequentist inference for linear mixed models 44
2.4.4 Frequentist inference for generalized linear mixed models 48
2.5 Estimation methods for sparse data in pairwise and network meta-analyses 57
2.5.1 Sparse data methods in pairwise meta-analysis 57
2.5.2 Sparse data methods in network meta-analysis 63
Chapter 3 Methods 65
3.1 Implementation of arm-parameterized network meta-analysis model in structural equation modeling 65
3.1.1 The backbone arm-parameterized model 65
3.1.2 The recognition of incidental parameter problem 67
3.1.3 Parameter elimination via integration 72
3.1.4 Incorporating studies adopting within-person designs 74
3.1.5 Arm-parameterized unrestricted weighted least squares (UWLS) model 77
3.1.6 Demonstration of the structural equation modeling framework 82
3.2 Evaluation of inconsistency in network meta-analysis with structural equation modeling 84
3.2.1 Global inconsistency evaluation 84
3.2.2 The information structure of direct-indirect evidence inconsistency 86
3.2.3 Design-oriented direct-indirect evidence inconsistency and its visualization using evidence graphs 88
3.2.4 A novel evidence-splitting method for information-oriented direct-indirect inconsistency assessment 108
3.2.5 Assessing inconsistency in real data under the SEM framework 125
3.3 Extension and evaluation of sparse data network meta-analysis estimation methods 130
3.3.1 Extension to the empirical correction 130
3.3.2 A novel multivariate extension to Peto odds ratios 131
3.3.3 Simulation and evaluation of the estimation methods 137
Chapter 4 Results 143
4.1 Demonstration of various arm-parameterized network meta-analysis models using structural equation modeling real data 143
4.1.1 Demonstration of arm-parameterized random effect model 143
4.1.2 Demonstration of the arm-parameterized unrestricted weighted least squares model 144
4.1.3 Demonstration of arm-parameterized random effect model with within-person designs 145
4.2 Demonstration of evidence comparison graph and various inconsistency models using structural equation modeling with real data 148
4.2.1 Demonstration of the design inconsistency model 148
4.2.2 Demonstration of the design-oriented direct-indirect evidence inconsistency models 148
4.2.3 Demonstration of the information-oriented direct-indirect evidence inconsistency models 152
4.3 Simulation results for sparse data evaluation 156
4.3.1 Simulation results with small but equal sample size for each arm 163
4.3.2 Simulation results with large but equal sample size for each arm 192
4.3.3 Simulation results with unequal sample size for each arm 199
Chapter 5 Conclusions 207
5.1 Summary and discussion of main findings of this thesis 207
5.1.1 A novel framework of structural equation modeling on network meta-analysis 207
5.1.2 Evaluation of inconsistency using multiple group analysis under the structural equation modeling framework 208
5.1.3 Development and evaluation of sparse data evaluation methods for NMA 211
5.2 Future work arising from this thesis 213
5.3 Final remarks 217
References 219
Appendix 225
1.Veroniki, A.A., et al., Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods, 2016. 7(1): p. 55-79.
2.Dersimonian, R. and N. Laird, Metaanalysis in Clinical-Trials. Controlled Clinical Trials, 1986. 7(3): p. 177-188.
3.Lu, G. and A.E. Ades, Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine, 2004. 23(20): p. 3105-3124.
4.Jones, B., et al., Statistical approaches for conducting network meta-analysis in drug development. Pharm Stat, 2011. 10(6): p. 523-31.
5.Tu, Y.K., Use of generalized linear mixed models for network meta-analysis. Med Decis Making, 2014. 34(7): p. 911-8.
6.White, I.R., Network meta-analysis. Stata Journal, 2015. 15(4): p. 951-985.
7.Sweeting, M.J., A.J. Sutton, and P.C. Lambert, What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med, 2004. 23(9): p. 1351-75.
8.Bradburn, M.J., et al., Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Statistics in Medicine, 2007. 26(1): p. 53-77.
9.Joreskog, K.G., A General Approach to Confirmatory Maximum Likelihood Factor Analysis. Psychometrika, 1969. 34(2p1): p. 183-&.
10.Joreskog, K.G., A General Method for Analysis of Covariance Structures. Biometrika, 1970. 57(2): p. 239-&.
11.Joreskog, K.G., Structural-Analysis of Covariance and Correlation Matrices. Psychometrika, 1978. 43(4): p. 443-477.
12.Cheung, M.W.L., Multivariate Meta-Analysis as Structural Equation Models. Structural Equation Modeling-a Multidisciplinary Journal, 2013. 20(3): p. 429-454.
13.Cheung, M.W.L., Modeling Dependent Effect Sizes With Three-Level Meta-Analyses: A Structural Equation Modeling Approach. Psychological Methods, 2014. 19(2): p. 211-229.
14.Cheung, M.W.-L., Meta-analysis: A structural equation modeling approach. 2015: John Wiley & Sons.
15.Cheung, M.W. and S.F. Cheung, Random-effects models for meta-analytic structural equation modeling: review, issues, and illustrations. Res Synth Methods, 2016. 7(2): p. 140-55.
16.Tu, Y.K. and Y.C. Wu, Using structural equation modeling for network meta-analysis. BMC Medical Research Methodology, 2017. 17.
17.Lu, G. and A.E. Ades, Assessing Evidence Inconsistency in Mixed Treatment Comparisons. Journal of the American Statistical Association, 2006. 101(474): p. 447-459.
18.Dias, S., et al., Checking consistency in mixed treatment comparison meta-analysis. Statistics in Medicine, 2010. 29(7-8): p. 932-944.
19.Bucher, H.C., et al., The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. Journal of Clinical Epidemiology, 1997. 50(6): p. 683-691.
20.Noma, H., et al., Quantifying indirect evidence in network meta-analysis. Stat Med, 2016.
21.Tu, Y.K., Using Generalized Linear Mixed Models to Evaluate Inconsistency within a Network Meta-Analysis. Value Health, 2015. 18(8): p. 1120-5.
22.Hawkins, N., D.A. Scott, and B. Woods, ''Arm-based'' parameterization for network meta-analysis. Research Synthesis Methods, 2016. 7(3): p. 306-313.
23.Stanley, T.D. and H. Doucouliagos, Neither fixed nor random: weighted least squares meta-analysis. Stat Med, 2015. 34(13): p. 2116-27.
24.Mawdsley, D., et al., Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study. Research Synthesis Methods, 2017. 8(1): p. 43-52.
25.Stanley, T.D. and H. Doucouliagos, Neither fixed nor random: weighted least squares meta-regression. Research Synthesis Methods, 2017. 8(1): p. 19-42.
26.Higgins, J.P., et al., Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods, 2012. 3(2): p. 98-110.
27.Jackson, D., et al., A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Stat Med, 2014. 33(21): p. 3639-54.
28.Jackson, D., P. Boddington, and I.R. White, The design-by-treatment interaction model: a unifying framework for modelling loop inconsistency in network meta-analysis. Res Synth Methods, 2016. 7(3): p. 329-32.
29.Krahn, U., H. Binder, and J. Konig, A graphical tool for locating inconsistency in network meta-analyses. BMC Med Res Methodol, 2013. 13: p. 35.
30.Krahn, U., H. Binder, and J. Konig, Visualizing inconsistency in network meta-analysis by independent path decomposition. BMC Medical Research Methodology, 2014. 14.
31.Piepho, H.P., Network-meta analysis made easy: detection of inconsistency using factorial analysis-of-variance models. BMC Medical Research Methodology, 2014. 14.
32.Chaimani, A., et al., Graphical tools for network meta-analysis in STATA. PLoS One, 2013. 8(10): p. e76654.
33.Aitken, A.C., IV.—On Least Squares and Linear Combination of Observations. Proceedings of the Royal Society of Edinburgh, 1936. 55: p. 42-48.
34.Patterson, H.D. and R. Thompson, Recovery of Inter-Block Information when Block Sizes are Unequal. Biometrika, 1971. 58(3): p. 545-554.
35.Kenward, M.G. and J.H. Roger, Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 1997. 53(3): p. 983-997.
36.Schaalje, G.B., J.B. McBride, and G.W. Fellingham, Adequacy of approximations to distributions of test statistics in complex mixed linear models. Journal of Agricultural, Biological, and Environmental Statistics, 2002. 7(4): p. 512-524.
37.Bock, R.D., G. Robert, and M. Eiji, Full-Information Item Factor Analysis. Applied Psychological Measurement, 1988. 12(3): p. 261-280.
38.Wolfinger, R. and M. O''Connell, Generalized linear mixed models a pseudo-likelihood approach. Journal of Statistical Computation and Simulation, 1993. 48(3-4): p. 233-243.
39.Lee, Y. and J.A. Nelder, Hierarchical generalized linear models. Journal of the Royal Statistical Society Series B-Methodological, 1996. 58(4): p. 619-656.
40.McCullagh, P., Generalized linear models. European Journal of Operational Research, 1984. 16(3): p. 285-292.
41.White, I.R., Multivariate random-effects meta-analysis. Stata Journal, 2009. 9(1): p. 40-56.
42.Cox, D.R., Continuity Correction. Biometrika, 1970. 57(1): p. 217-&.
43.Cai, T., L. Parast, and L. Ryan, Meta-analysis for rare events. Stat Med, 2010. 29(20): p. 2078-89.
44.Rucker, G., et al., Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Statistics in Medicine, 2009. 28(5): p. 721-738.
45.Yusuf, S., et al., Beta-Blockade during and after Myocardial-Infarction - an Overview of the Randomized Trials. Progress in Cardiovascular Diseases, 1985. 27(5): p. 335-371.
46.Brockhaus, A.C., R. Bender, and G. Skipka, The Peto odds ratio viewed as a new effect measure. Statistics in Medicine, 2014. 33(28): p. 4861-4874.
47.Yusuf, S., et al., Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis, 1985. 27(5): p. 335-71.
48.Mantel, N. and W. Haenszel, Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the national cancer institute, 1959. 22(4): p. 719-748.
49.Yanagimoto, T., Combining moment estimates of a parameter common through strata. Journal of Statistical Planning and Inference, 1990. 25(2): p. 187-194.
50.Greenland, S., Generalized Mantel-Haenszel Estimators for K2xj Tables. Biometrics, 1989. 45(1): p. 183-191.
51.Liang, K.Y., Extended Mantel-Haenszel Estimating Procedure for Multivariate Logistic-Regression Models. Biometrics, 1987. 43(2): p. 289-299.
52.Mickey, R.M. and R.M. Elashoff, A Generalization of the Mantel-Haenszel Estimator of Partial Association for 2xjxk-Tables. Biometrics, 1985. 41(3): p. 623-635.
53.Yanagawa, T. and Y. Fujii, Projection-Method Mantel-Haenszel Estimator for K-2xj Tables. Journal of the American Statistical Association, 1995. 90(430): p. 649-656.
54.Sato, T., An Estimating Equation Approach for the Analysis of Case-Control Studies with Exposure Measured at Several Levels. Statistics in Medicine, 1991. 10(7): p. 1037-1042.
55.Stijnen, T., T.H. Hamza, and P. Ozdemir, Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med, 2010. 29(29): p. 3046-67.
56.HertPicciotto, I. and B. Rockhill, Validity and efficiency of approximation methods for tied survival times in Cox regression. Biometrics, 1997. 53(3): p. 1151-1156.
57.Neyman, J. and E.L. Scott, Consistent Estimates Based on Partially Consistent Observations. Econometrica, 1948. 16(1): p. 1-32.
58.Lancaster, T., Orthogonal parameters and panel data. Review of Economic Studies, 2002. 69(3): p. 647-666.
59.Hasselblad, V., Meta-analysis of multitreatment studies. Medical Decision Making, 1998. 18(1): p. 37-43.
60.Cox, D.R. and E.J. Snell, Analysis of binary data. Vol. 32. 1989: CRC Press.
61.White, I.R., Multivariate random-effects meta-regression: Updates to mvmeta. Stata Journal, 2011. 11(2): p. 255-270.
62.Hong, H., et al., A Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons. Res Synth Methods, 2016. 7(1): p. 6-22.
63.Zhang, J., et al., Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness. Stat Methods Med Res, 2015.
64.Dias, S. and A.E. Ades, Absolute or relative effects? Arm-based synthesis of trial data. Res Synth Methods, 2016. 7(1): p. 23-8.
65.Berger, J.O., B. Liseo, and R.L. Wolpert, Integrated likelihood methods for eliminating nuisance parameters. Statistical Science, 1999. 14(1): p. 1-22.
66.Su, Y.X. and Y.K. Tu, Statistical Approaches to Adjusting Weights for Dependent Arms in Network Meta-analysis. Res Synth Methods, 2018.
67.Muthén, L.K. and B.O. Muthén Mplus User’s Guide. Seventh Edition. . 1998-2015.
68.Pandis, N., et al., CONSORT 2010 statement: extension checklist for reporting within person randomised trials. Bmj-British Medical Journal, 2017. 357.
69.Efthimiou, O., et al., A model for meta-analysis of correlated binary outcomes: The case of split-body interventions. Stat Methods Med Res, 2017: p. 962280217746436.
70.Tu, Y.K., et al., A Bayesian network meta-analysis on comparisons of enamel matrix derivatives, guided tissue regeneration and their combination therapies. J Clin Periodontol, 2012. 39(3): p. 303-14.
71.Lesaffre, E., et al., The design and analysis of split-mouth studies: What statisticians and clinicians should know. Statistics in Medicine, 2009. 28(28): p. 3470-3482.
72.Wallis, W.D., A beginner''s guide to graph theory. 2010: Springer Science & Business Media.
73.Tu, Y.K., Node-Splitting Generalized Linear Mixed Models for Evaluation of Inconsistency in Network Meta-Analysis. Value in Health, 2016. 19(8): p. 957-963.
74.Brockhaus, A.C., U. Grouven, and R. Bender, Performance of the Peto odds ratio compared to the usual odds ratio estimator in the case of rare events. Biometrical Journal, 2016. 58(6): p. 1428-1444.
75.Mawdsley, D., et al., Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study. Res Synth Methods, 2016.
76.Akaike, H., Information Theory and an Extension of the Maximum Likelihood Principle, in Selected Papers of Hirotugu Akaike, E. Parzen, K. Tanabe, and G. Kitagawa, Editors. 1998, Springer New York: New York, NY. p. 199-213.
77.Petkova, E., et al., Interpreting meta-regression: application to recent controversies in antidepressants'' efficacy. Stat Med, 2013. 32(17): p. 2875-92.
78.Zhang, J., et al., Network meta-analysis of randomized clinical trials: Reporting the proper summaries. Clinical Trials, 2014. 11(2): p. 246-262.
79.LaMotte, L.R., A direct derivation of the REML likelihood function. Statistical Papers, 2007. 48(2): p. 321-327.
80.Sherman, J. and W.J. Morrison, Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix. Ann. Math. Statist., 1950. 21(1): p. 124-127.
81.Harville, D.A., Matrix algebra from a statistician''s perspective. Vol. 1. 1997: Springer.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top