|
1.Veroniki, A.A., et al., Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods, 2016. 7(1): p. 55-79. 2.Dersimonian, R. and N. Laird, Metaanalysis in Clinical-Trials. Controlled Clinical Trials, 1986. 7(3): p. 177-188. 3.Lu, G. and A.E. Ades, Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine, 2004. 23(20): p. 3105-3124. 4.Jones, B., et al., Statistical approaches for conducting network meta-analysis in drug development. Pharm Stat, 2011. 10(6): p. 523-31. 5.Tu, Y.K., Use of generalized linear mixed models for network meta-analysis. Med Decis Making, 2014. 34(7): p. 911-8. 6.White, I.R., Network meta-analysis. Stata Journal, 2015. 15(4): p. 951-985. 7.Sweeting, M.J., A.J. Sutton, and P.C. Lambert, What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med, 2004. 23(9): p. 1351-75. 8.Bradburn, M.J., et al., Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Statistics in Medicine, 2007. 26(1): p. 53-77. 9.Joreskog, K.G., A General Approach to Confirmatory Maximum Likelihood Factor Analysis. Psychometrika, 1969. 34(2p1): p. 183-&. 10.Joreskog, K.G., A General Method for Analysis of Covariance Structures. Biometrika, 1970. 57(2): p. 239-&. 11.Joreskog, K.G., Structural-Analysis of Covariance and Correlation Matrices. Psychometrika, 1978. 43(4): p. 443-477. 12.Cheung, M.W.L., Multivariate Meta-Analysis as Structural Equation Models. Structural Equation Modeling-a Multidisciplinary Journal, 2013. 20(3): p. 429-454. 13.Cheung, M.W.L., Modeling Dependent Effect Sizes With Three-Level Meta-Analyses: A Structural Equation Modeling Approach. Psychological Methods, 2014. 19(2): p. 211-229. 14.Cheung, M.W.-L., Meta-analysis: A structural equation modeling approach. 2015: John Wiley & Sons. 15.Cheung, M.W. and S.F. Cheung, Random-effects models for meta-analytic structural equation modeling: review, issues, and illustrations. Res Synth Methods, 2016. 7(2): p. 140-55. 16.Tu, Y.K. and Y.C. Wu, Using structural equation modeling for network meta-analysis. BMC Medical Research Methodology, 2017. 17. 17.Lu, G. and A.E. Ades, Assessing Evidence Inconsistency in Mixed Treatment Comparisons. Journal of the American Statistical Association, 2006. 101(474): p. 447-459. 18.Dias, S., et al., Checking consistency in mixed treatment comparison meta-analysis. Statistics in Medicine, 2010. 29(7-8): p. 932-944. 19.Bucher, H.C., et al., The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. Journal of Clinical Epidemiology, 1997. 50(6): p. 683-691. 20.Noma, H., et al., Quantifying indirect evidence in network meta-analysis. Stat Med, 2016. 21.Tu, Y.K., Using Generalized Linear Mixed Models to Evaluate Inconsistency within a Network Meta-Analysis. Value Health, 2015. 18(8): p. 1120-5. 22.Hawkins, N., D.A. Scott, and B. Woods, ''Arm-based'' parameterization for network meta-analysis. Research Synthesis Methods, 2016. 7(3): p. 306-313. 23.Stanley, T.D. and H. Doucouliagos, Neither fixed nor random: weighted least squares meta-analysis. Stat Med, 2015. 34(13): p. 2116-27. 24.Mawdsley, D., et al., Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study. Research Synthesis Methods, 2017. 8(1): p. 43-52. 25.Stanley, T.D. and H. Doucouliagos, Neither fixed nor random: weighted least squares meta-regression. Research Synthesis Methods, 2017. 8(1): p. 19-42. 26.Higgins, J.P., et al., Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods, 2012. 3(2): p. 98-110. 27.Jackson, D., et al., A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Stat Med, 2014. 33(21): p. 3639-54. 28.Jackson, D., P. Boddington, and I.R. White, The design-by-treatment interaction model: a unifying framework for modelling loop inconsistency in network meta-analysis. Res Synth Methods, 2016. 7(3): p. 329-32. 29.Krahn, U., H. Binder, and J. Konig, A graphical tool for locating inconsistency in network meta-analyses. BMC Med Res Methodol, 2013. 13: p. 35. 30.Krahn, U., H. Binder, and J. Konig, Visualizing inconsistency in network meta-analysis by independent path decomposition. BMC Medical Research Methodology, 2014. 14. 31.Piepho, H.P., Network-meta analysis made easy: detection of inconsistency using factorial analysis-of-variance models. BMC Medical Research Methodology, 2014. 14. 32.Chaimani, A., et al., Graphical tools for network meta-analysis in STATA. PLoS One, 2013. 8(10): p. e76654. 33.Aitken, A.C., IV.—On Least Squares and Linear Combination of Observations. Proceedings of the Royal Society of Edinburgh, 1936. 55: p. 42-48. 34.Patterson, H.D. and R. Thompson, Recovery of Inter-Block Information when Block Sizes are Unequal. Biometrika, 1971. 58(3): p. 545-554. 35.Kenward, M.G. and J.H. Roger, Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 1997. 53(3): p. 983-997. 36.Schaalje, G.B., J.B. McBride, and G.W. Fellingham, Adequacy of approximations to distributions of test statistics in complex mixed linear models. Journal of Agricultural, Biological, and Environmental Statistics, 2002. 7(4): p. 512-524. 37.Bock, R.D., G. Robert, and M. Eiji, Full-Information Item Factor Analysis. Applied Psychological Measurement, 1988. 12(3): p. 261-280. 38.Wolfinger, R. and M. O''Connell, Generalized linear mixed models a pseudo-likelihood approach. Journal of Statistical Computation and Simulation, 1993. 48(3-4): p. 233-243. 39.Lee, Y. and J.A. Nelder, Hierarchical generalized linear models. Journal of the Royal Statistical Society Series B-Methodological, 1996. 58(4): p. 619-656. 40.McCullagh, P., Generalized linear models. European Journal of Operational Research, 1984. 16(3): p. 285-292. 41.White, I.R., Multivariate random-effects meta-analysis. Stata Journal, 2009. 9(1): p. 40-56. 42.Cox, D.R., Continuity Correction. Biometrika, 1970. 57(1): p. 217-&. 43.Cai, T., L. Parast, and L. Ryan, Meta-analysis for rare events. Stat Med, 2010. 29(20): p. 2078-89. 44.Rucker, G., et al., Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Statistics in Medicine, 2009. 28(5): p. 721-738. 45.Yusuf, S., et al., Beta-Blockade during and after Myocardial-Infarction - an Overview of the Randomized Trials. Progress in Cardiovascular Diseases, 1985. 27(5): p. 335-371. 46.Brockhaus, A.C., R. Bender, and G. Skipka, The Peto odds ratio viewed as a new effect measure. Statistics in Medicine, 2014. 33(28): p. 4861-4874. 47.Yusuf, S., et al., Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis, 1985. 27(5): p. 335-71. 48.Mantel, N. and W. Haenszel, Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the national cancer institute, 1959. 22(4): p. 719-748. 49.Yanagimoto, T., Combining moment estimates of a parameter common through strata. Journal of Statistical Planning and Inference, 1990. 25(2): p. 187-194. 50.Greenland, S., Generalized Mantel-Haenszel Estimators for K2xj Tables. Biometrics, 1989. 45(1): p. 183-191. 51.Liang, K.Y., Extended Mantel-Haenszel Estimating Procedure for Multivariate Logistic-Regression Models. Biometrics, 1987. 43(2): p. 289-299. 52.Mickey, R.M. and R.M. Elashoff, A Generalization of the Mantel-Haenszel Estimator of Partial Association for 2xjxk-Tables. Biometrics, 1985. 41(3): p. 623-635. 53.Yanagawa, T. and Y. Fujii, Projection-Method Mantel-Haenszel Estimator for K-2xj Tables. Journal of the American Statistical Association, 1995. 90(430): p. 649-656. 54.Sato, T., An Estimating Equation Approach for the Analysis of Case-Control Studies with Exposure Measured at Several Levels. Statistics in Medicine, 1991. 10(7): p. 1037-1042. 55.Stijnen, T., T.H. Hamza, and P. Ozdemir, Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med, 2010. 29(29): p. 3046-67. 56.HertPicciotto, I. and B. Rockhill, Validity and efficiency of approximation methods for tied survival times in Cox regression. Biometrics, 1997. 53(3): p. 1151-1156. 57.Neyman, J. and E.L. Scott, Consistent Estimates Based on Partially Consistent Observations. Econometrica, 1948. 16(1): p. 1-32. 58.Lancaster, T., Orthogonal parameters and panel data. Review of Economic Studies, 2002. 69(3): p. 647-666. 59.Hasselblad, V., Meta-analysis of multitreatment studies. Medical Decision Making, 1998. 18(1): p. 37-43. 60.Cox, D.R. and E.J. Snell, Analysis of binary data. Vol. 32. 1989: CRC Press. 61.White, I.R., Multivariate random-effects meta-regression: Updates to mvmeta. Stata Journal, 2011. 11(2): p. 255-270. 62.Hong, H., et al., A Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons. Res Synth Methods, 2016. 7(1): p. 6-22. 63.Zhang, J., et al., Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness. Stat Methods Med Res, 2015. 64.Dias, S. and A.E. Ades, Absolute or relative effects? Arm-based synthesis of trial data. Res Synth Methods, 2016. 7(1): p. 23-8. 65.Berger, J.O., B. Liseo, and R.L. Wolpert, Integrated likelihood methods for eliminating nuisance parameters. Statistical Science, 1999. 14(1): p. 1-22. 66.Su, Y.X. and Y.K. Tu, Statistical Approaches to Adjusting Weights for Dependent Arms in Network Meta-analysis. Res Synth Methods, 2018. 67.Muthén, L.K. and B.O. Muthén Mplus User’s Guide. Seventh Edition. . 1998-2015. 68.Pandis, N., et al., CONSORT 2010 statement: extension checklist for reporting within person randomised trials. Bmj-British Medical Journal, 2017. 357. 69.Efthimiou, O., et al., A model for meta-analysis of correlated binary outcomes: The case of split-body interventions. Stat Methods Med Res, 2017: p. 962280217746436. 70.Tu, Y.K., et al., A Bayesian network meta-analysis on comparisons of enamel matrix derivatives, guided tissue regeneration and their combination therapies. J Clin Periodontol, 2012. 39(3): p. 303-14. 71.Lesaffre, E., et al., The design and analysis of split-mouth studies: What statisticians and clinicians should know. Statistics in Medicine, 2009. 28(28): p. 3470-3482. 72.Wallis, W.D., A beginner''s guide to graph theory. 2010: Springer Science & Business Media. 73.Tu, Y.K., Node-Splitting Generalized Linear Mixed Models for Evaluation of Inconsistency in Network Meta-Analysis. Value in Health, 2016. 19(8): p. 957-963. 74.Brockhaus, A.C., U. Grouven, and R. Bender, Performance of the Peto odds ratio compared to the usual odds ratio estimator in the case of rare events. Biometrical Journal, 2016. 58(6): p. 1428-1444. 75.Mawdsley, D., et al., Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study. Res Synth Methods, 2016. 76.Akaike, H., Information Theory and an Extension of the Maximum Likelihood Principle, in Selected Papers of Hirotugu Akaike, E. Parzen, K. Tanabe, and G. Kitagawa, Editors. 1998, Springer New York: New York, NY. p. 199-213. 77.Petkova, E., et al., Interpreting meta-regression: application to recent controversies in antidepressants'' efficacy. Stat Med, 2013. 32(17): p. 2875-92. 78.Zhang, J., et al., Network meta-analysis of randomized clinical trials: Reporting the proper summaries. Clinical Trials, 2014. 11(2): p. 246-262. 79.LaMotte, L.R., A direct derivation of the REML likelihood function. Statistical Papers, 2007. 48(2): p. 321-327. 80.Sherman, J. and W.J. Morrison, Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix. Ann. Math. Statist., 1950. 21(1): p. 124-127. 81.Harville, D.A., Matrix algebra from a statistician''s perspective. Vol. 1. 1997: Springer.
|