跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 19:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝國章
研究生(外文):Kuo-Chang Hsieh
論文名稱:以脈衝電漿聚合技術替代傳統氣相聚合聚對二甲苯薄膜之研究
論文名稱(外文):Plasma-polymerized Films as an Alternative to Conventional Gas-phase Condensed Parylene
指導教授:陳克昌陳克昌引用關係何主亮何主亮引用關係
指導教授(外文):Keh-chang ChenJu-liang He
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:脈衝直流電漿聚合對二甲苯醫材表面處理聚對二甲苯薄膜
外文關鍵詞:ParylenePara-xyleneSurface treatment of medical devicesPulsed-dc plasma polymerization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1163
  • 評分評分:
  • 下載下載:148
  • 收藏至我的研究室書目清單書目收藏:1
聚對二甲苯(Parylene, PPXN)鍍膜為一透明、質輕、表面無針孔、保形、防潮、防蝕且絕緣之鍍膜,廣用於醫療器材、航太、軍事和電子工業。它具有之獨特性質另包括良好之生物相容性、無細胞毒性、阻水和乾式潤滑,使適用於生醫材料表面改質。短期用途如於探針或注射針頭表面增加潤滑度;長期用途如用於人工心臟、瓣膜或人工電子耳表面與組織絕緣、避免被體液腐蝕。目前商業最常用的為parylene C 和parylene N,其傳統沉積過程係始於粉末狀之對二甲苯雙體(Dimer),經約650℃高溫裂解形成氣相單體(Monomer),再於室溫下形成聚合型態的固態鍍膜。然而,這種傳統的作法有諸多缺點,包括:起始原料價格昂貴、需要高溫裂解程序造成高能源消費、沉積速率慢、鍍膜硬度差而易刮損以及真空度需求較高。本研究擬採用脈衝直流電漿聚合(Pulsed-dc plasma polymerization)的技術,以低成本之液態對二甲苯為起始原料,在常用之醫材表面被覆聚合鍍膜(Plasma polymerized para-xylene, PPX),以材料的分析檢測方法來了解鍍膜之微觀組織與特性,並以細胞培養來了解其生物相容性,期望製備出類似parylene特性之鍍膜,使可用於生醫材料表面處理。
研究結果顯示:化學氣相沉積的PPXN鍍膜為α相結晶結構,電漿聚合PPX則呈現非晶。PPXN鍍膜中呈現具有苯環及烷類烴之線性高分子結構,而PPX鍍膜分子結構在低頻高流量時傾向於生成烯類烴及烷類烴之短程結構,在高頻低氬氣流量時傾向無機結構。鍍膜的微觀形貌,PPXN鍍膜微觀組織呈現出纖維狀之組織,而PPX則為緻密推疊。PPXN的成長速率為0.16 μm/h,而PPX可從0.05 μm/h到0.48 μm /h,於高流量時的成長速率大於PPXN,表面粗度隨著頻率的上升而下降,造成在高頻率的離子轟擊下,薄膜表面平整。在機械性質表現上,鉛筆硬度達到8H之的等級,施鍍於AISI 304不�袗�之最高附著性顯示出4B的等級,展現出高於PPXN鍍膜之表面硬度和略低於PPXN鍍膜之附著性。經過電漿聚合PPX之水滴接觸角為60º~85º比PPXN水滴接觸角為86.1º更具親水性。施鍍於玻璃基材上的PPX在中、低頻以及高氬氣流量之下,高成長速率對應出較厚的鍍膜伴隨較高的薄膜內應力,而造成薄膜在細胞培養前的消毒程序中脫落。高頻、低氬氣流量所得之較薄的薄膜則附著性良好,未發生鍍膜脫落的現象,細胞生長數量高於PPXN。施鍍於軟質矽膠基材上的PPX則因鍍膜不累積內應力,因而不受細胞培養的消毒程序而脫落。於高頻率及高氬氣流量下,細胞數目高於矽膠裸材,顯示PPX具有比矽膠祼材更良好的生物相容性。此項研究說明了利用脈衝直流電漿聚合鍍膜技術,以para-xylene為原料所獲得的鍍膜具有緻密的微結構、適當的機械性質及良好的生物相容性,有機會成為parylene鍍膜的替代方案以用於醫材表面處理。
Parylene (or poly-para-xylene, PPXN) coating is known to be transparent, thin, continuous, conformal, water-proof, anticorrosive, insulating and widely used in medical, aerospace, military and electronic industries. With these unique properties, such a coating has been let to be used for biomedical material surface treatment with respect to its excellent biocompatibility, non-cytotoxicity, effective barrier and dry lubricant: short-term applications, such as probes or needles, with enhancement of lubricity; long-term applications, such as cochlear implants or cardiac assist devices with tissue isolation and inhibiting corrosive biofluids. The traditional parylene deposition process involves powdery di-para-xylene dimmer as the starting precursor, parylene C and parylene N most commonly used. Through the monomer generator operated at 650℃, the thermally decomposed monomer gas is admitted onto substrate to form solid polymerized thin film at room temperature. Drawbacks of such a process include the usage of expensive starting material, high thermal energy consumption for monomer generation, relatively low deposition rate, low film hardness and higher vacuum degree requirement.
An alternative will be proposed by using pulsed-dc plasma polymerization to deposit solid film with nature similar to parylene film. Low cost and liquid para-xylene was used as the starting material to polymerize on different substrates. A systematical study will be carried out to the optimization of deposition condition. Coatings will be instigated by using materials characterization techniques to realize film microstructure. Mechanical properties will also be studied. Cell culture will be carried out to reveal its biocompatibility. The development of such an alternative to parylene coating by using polymerization will be facilitated for biomedical material applications.
The results revealed that the crystal structure of the CVD-PPXN film is α-phase, and the plasma-polymerized PPX film is amorphous. The PPXN film is a linear polymer composed of benzene ring and alkanes. The PPX film tends to present a short-chain linear structure of alkenes and alkanes at low frequency and high gas flow rate. It tends to be inorganic structure of the deposited film when high pulse frequency and low Ar gas flow rate are employed during deposition. As for its microscopic morphology, PPXN presents with fibrous appearance, while PPX film presents dense feature. Growth rate of PPXN measures about 0.16 μm/h, and that of PPX ranges from 0.05 μm/h to 0.48 μm /h which is higher than that of PPXN at high gas glow rate. Surface roughness of PPX decreases as the frequency increases, and this should be that ionic bombardment at high frequency resulted in surface smoothness. As for its mechanical properties, a pencil hardness of 8H of PPX is higher than that of PPXN, and the ultimate film adhesion on AISI 304 stainless steel graded as 4B is slightly lower than that of PPXN. Water contact angle of PPX are 60º-85º, which is more hydrophilic than PPXN with 86.1º. PPX deposited on hard glass substrate, at low to medium frequency and high Ar gas flow rate, suffers from film spallation during sterilization prior to cell culture. This maybe caused by the high internal stress of the deposited films. For the films obtained at high frequency and low Ar flow rate reveals strong adhesion. Cell culture on PPX deposited specimens reveals a higher cell count than the PPXN deposited one. PPX deposited on soft silicone substrate, due to less internal stress built in the film, present strong film adhesion regardless of deposition conditions. Among which PPX deposited at high frequency and high Ar flow rate exhibit a higher cell count than bare silicone as revealed by the result of cell culture. These quantitative indications as revealed above implies that the pulsed-dc plasma polymerized para-xylene can possibly be an alternative to conventional parylene thin films for surface treatment of medical devices by proper control of process parameters.
總目錄

中文摘要 i
英文摘要 ..................................................................................................iii
總目錄 vi
圖目錄 viii
表目錄 xi
第一章 前言 1
第二章 文獻回顧 3
2-1 傳統聚對二甲苯鍍膜之概述 3
2-2 傳統聚對二甲苯鍍膜之製程、微觀組織與特性 7
2-3 生醫材料之表面處理及生物相容性 11
2-4 電漿聚合之原理與應用 15
2-5 電漿聚合對二甲苯薄膜替代傳統聚對二甲苯鍍膜之可行性 18
第三章 研究方法與流程 22
3-1 實驗設計與流程 22
3-2 實驗材料選擇 23
3-3 傳統聚對二甲苯鍍膜及電漿聚合對二甲苯薄膜設備與施鍍步驟 25
3-4 分析儀器及測試 32
3-4.1 薄膜晶體結構、化學結構及微觀形貌 32
3-4.2 薄膜機械性質 33
3-4.3 薄膜親水性 35
3-4.4 薄膜生物相容性 35
第四章 結果與討論 41
4-1 傳統聚對二甲苯鍍膜及對二甲苯聚合膜之結構、形貌及成長速率 41
4-1.1 薄膜晶體結構 41
4-1.2 薄膜分子結構 44
4-1.3 薄膜微觀形貌觀察 50
4-1.4 薄膜成長速率 54
4-2 傳統聚對二甲苯鍍膜及對二甲苯聚合膜之機械性質 55
4-2.1 薄膜硬度 55
4-2.2 薄膜附著性 56
4-3 傳統聚對二甲苯鍍膜及對二甲苯聚合膜之親水性 58
4-4 傳統聚對二甲苯鍍膜及對二甲苯聚合膜之生物相容性 59
第五章 結論 63
參考文獻.. 65
誌謝..........................................................................................................73

圖目錄

圖2-1 (a)起始原料di-para-xylylene雙體 (b)裂解後para-xylylene單體 (c)聚合型式之parylene薄膜結構單元 3
圖2-2 商業上常見的parylene薄膜類型(a)parylene N (b)parylene C (c)parylene D (d)parylene F 4
圖2-3 不同種類的parylene薄膜型式 4
圖2-4 PPXN製程示意圖 7
圖2-5 PPXN薄膜X光繞射圖形 8
圖2-6 PPXN紅外光譜圖 8
圖2-7 PPXN纖維微觀組織 9
圖2-8 均勻且保形的parylene薄膜示意圖 10
圖2-9 電漿聚合可能的反應機構 15
圖2-10 傳統聚合物與電漿聚合物示意圖 16
圖3-1 實驗流程圖 22
圖3-2 對二甲苯化學結構 24
圖3-3 電漿聚合系統示意圖 26
圖3-4 對二甲苯飽合瓶示意圖 26
圖3-5 雙極脈衝直流電源供應器波型圖 28
圖3-6 雙極式脈衝直流電源供應器在一個脈衝循環的工作情形 (a)在Ton時 (b)在Toff時 29
圖3-7 雙極脈衝直流電源供應器於不同電源供應器頻率及不同Toff時間之波型圖 30
圖3-8 Elcometer F107畫格器 33
圖3-9 鉛筆硬度測試儀 35
圖3-10 細胞培養流程圖 36
圖3-11 無菌生物櫃 37
圖3-12 CO2培養箱 38
圖3-13 血球計數盤 40
圖4-1 (a)未施鍍之AISI 304不�袗�原材 (b)施鍍PPXN之X光繞射圖形 41
圖4-2 固定氬氣流量為(a)10 (b)20 (c)30 (d)40 (e)50 sccm,變動脈衝頻率25~100 kHz所得之PPX X光繞射圖 42
圖4-3 PPXN紅外光譜圖,圖中s代表stretching,b代表bending 44
圖4-4 固定氬氣流量為(a)10 (b)20 (c)30 (d)40 (e)50 sccm,變動脈衝頻率25~100 kHz所得之PPX紅外光譜圖 48
圖4-5 PPXN之截面形貌(a)低倍(b)高倍 50
圖4-6 固定氬氣流量為(a)10 (b)20 (c)30 (d)40 (e)50 sccm,變動脈衝頻率25~100 kHz所得之PPX截面形貌 51
圖4-7 不同氬氣流量下變動脈衝頻率所得之PPX表面粗糙度 53
圖4-8 不同氬氣流量下變動脈衝頻率所得之PPX成長速率圖 54
圖4-9 不同氬氣流量下變動脈衝頻率所得之PPX鉛筆硬度,圖中虛線為PPXN之鉛筆硬度 55
圖4-10 (a)PPXN及(b)PPX 膠帶附著力測試之巨觀及微觀圖 56
圖4-11 不同氬氣流量變動脈衝頻率所得之PPX附著性,圖中虛線為PPXN之附著性 57
圖4-12 不同氬氣流量變動脈衝頻率所得之PPX水滴接觸角 58
圖4-13 生長於PPX上的纖維母細胞 60
圖4-14 以載玻片玻璃為基材,施鍍PPX及PPXN後進行細胞培養之細胞數目 61
圖4-15 以矽膠為基材,施鍍PPX後進行細胞培養之細胞數目 62

表目錄

表2-1 對二甲苯、叔丁基苯、甲氧苯之物理、化學性質表 17
表3-1 聚對二甲苯二聚體物理、化學性質 24
表3-2 對二甲苯物理、化學性質 24
表3-3 PPXN沉積參數 25
表3-4 雙極式脈衝直流電源供應器可設定參數之範圍 27
表3-5 前處理參數及PPX沉積參數 31
表3-6 ASTM D3359–02膠帶附著力測試結果分級表 34
表3-7 ASTM D3363–05規範由小到大之鉛筆硬度等級 35
表4-1 PPXN吸收峰位置及對應的官能基 45
表4-2 PPX吸收峰位置及對應的官能基 46
表4-3 對二甲苯原料吸收峰位置及對應的官能基 47
表4-4 以載玻片玻璃為基材,施鍍PPX及PPXN後進行細胞培養之細胞數目 60
表4-5 以矽膠為基材,施鍍PPX後進行細胞培養之細胞數目 61
參考文獻
1.俞耀庭、林峰輝、白育綸,生物醫用材料,新文京開發,2004,270。
2.L. Wolgemuth, “The surface modification properties of parylene for medical applications. Technology & Services”, Business Briefing: medical device manufacturing & technology, (2001) 1.
3.陳克紹、陳素真、陳天牧、邱世華,“表面電漿改質技術於生醫材料之應用”,工業材料,18 (2004) 30-39。
4.J. Bienkiewicz, “Plasma-enhanced parylene coating for medical device applications”, Medical Device Technology, 17 (2006) 10.
5.B. Mitu, S. B. Gogonea, H. Leonhartsberger, M. Lindner, S. Bauer and G. Dinescu, “Plasma deposited parylene-like thin films: process and material properties”, Surface and Coatings Technology, 174-175 (2003) 124.
6.H. Biederman, Plasma Polymer Films, Imperial College Press, New Jersey, (2004) 20-21.
7.M. Szwarc, “Some remarks on the CH2[graphic omitted]CH2 molecule”, Discussions Faraday Society, 2 (1947) 46.
8.M. Szwarc, “New monomers of the quinoid type and their polymers”, Journal of Polymer Science, 6 (1951) 319.
9.M. Szwarc, “The C-H bond energy in toluene and xylenes”, The Journal of Chemical Physics, 16 (1948) 128.
10.W. Gorham, “A new, general synthetic method for the preparation of linear poly-p-xylylenes”, Journal of Polymer Science: Part A-1, 4 (1966) 3027.
11.J. C. Salamone, Polymeric Materials Encyclopedia, Vol. 9, CRC press, New York, (1996) 7171.
12.G. E. Loeb, R. A. Peck and J. Martyniuk, “Toward the ultimate metal microelectrode”, Journal of Neuroscience Methods, 63 (1995) 175.
13.E. M. Schmidt, J.S. McIntosh and M. J. Bak, “Long-term implants of Parylene-C coated microelectrodes”, Medical and Biological Engineering and Computing, 26 (1988) 96.
14.J. H. Noar, A. Wahab, R. D. Evans and A. G. Wojcik, “The durability of parylene coatings on neodymium-iron-boron magnets”, European Journal of Orthodontics, 21 (1999) 685.
15.K. J. Taylor, M. Eissa, J. F. Gaynor, S.-P. Jeng and H. Nguyen, “Parylene copolymers”, 1997 Spring MRS Symposium.
16.J. F. Gaynor, S. B. Desu and J. J. Senkevich, “A model for chemical vapor copolymerization of p-xylylenes with vinylic comonomers: order of initiation and reactivity ratios”, Macromolecules, 28 (1995) 7343.
17.J. F. Gaynor, S. B. Desu and J. J. Senkevich, “A new method for fabricating high performance polymeric thin films by chemical vapor polymerization”, Journal of Materials Research, 11 (1996) 1842.
18.L. Q. Wu, “Parylene conformal coating”, Electro-Mechanical Engineering, 20 (2004) 51.
19.http://www.scscoatings.com/, “Parylene applications”, Specialty Coating Systems, 2008.
20.Herman. F. Mark, “Encyclopedia of Polymer Science and Technology”, John Wiley & Sons, (2007) 587.
21.J. J. Senkevich, S. B. Desu and V. Simkovic, “Temperature studies of optical birefringence and X-ray diffraction with poly(p-xylylene), poly(chloro-p-xylylene) and poly(tetrafluoro-p-xylylene) CVD thin films”, Polymer, 41 (2000) 2379.
22.M. Morgen, S. H. Rhee, J. H. Zhao, I. Malik, T. Ryan, H. M. Ho, M. A. Plano and P. Ho, “Comparison of crystalline phase transitions in fluorinated vs nonfluorinated parylene thin films”, Macromolecules, 32 (1999) 7555.
23.G. R. Yang, D. Mathur, J. F. McDonald and T. M. Lu, “Study on the interfaces of cu/pa-n and pa-n/si by secondary ion mass spectroscopy and scanning electron microscopy”, The Journal of Vaccum Science and Technology A,14 (1996) 3169.
24.邱正杰,“低介電係數Low-k材料在IC製程上的應用”,化工技術,7 (1999) 205。
25.L. Ke, R. S. Kumar, K. Zhang, S. J. Chua and A. T. S. Wee, “Effect of parylene layer on the performance of OLED”, Microelectronics Journal, 35 (2004) 325.
26.W. R. Dolbier and W. F. Beach, “Parylene-AF4: a polymer with exceptional dielectric and thermal properties”, Journal of Fluorine Chemistry, 122 (2003) 97.
27.T. C. Shiah, L. S. Kuo, H. L. Lee, M. H. Duh and H. C. Lin, “Application of a polyparaxylylene coating film for strengthening weak and brittle paper-based cultural relics”, Taiwan Journal of Forest science, 21 (2006) 75.
28.W. Li, D. C. Rodger, P. R. Menon and Y. C. Tai, “Corrosion behavior of parylene-metal-parylene thin films in salin”, ECS Transactions, 11 (2008) 1.
29.S. Satyanarayana, D. T. McCormick and A. Majumdar, “Parylene micro membrane capacitive sensor array for chemical and biological sensing”, Sensors and Actuators B, 115 (2006) 494.
30.M. Demirel, “Emergent properties of spatially organized poly(p-xylylene) films fabricated by vapor deposition”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 321 (2008) 121.
31.P. V. Kola, S. Daniels, D. C. Cameron and M. S. J. Hashmi, “Magnetron sputtering of TiN protective coatings for medical applications”, Journal of Material Processing Technology, 56, 1-4 (1996) 422.
32.M. J. Pappas, G. Makris and F. F. Buechel, “Titanium nitride ceramic film against polyethylene: A 48 million cycle wear test”, Clinical Orthopaedics and Related Research, 317 (1995) 64.
33.Y. H. Shih, C. T. Lin, C. M. Liu, C. C. Chen, C. S. Chen and K. L. Ou, “Effect of nano-titanium hydride on formation of multi-nanoporous TiO2 film on Ti”, Applied Surface Science, 253 (2007) 3678.
34.R. Wang and Y. X. Hu, “Patterning hydroxyapatite biocoating by electrophoretic deposition”, Journal of Biomedical Material Research, 67 (2003) 270.
35.M. R. Yang, K. S. Chen and J. L. He, “The interaction between blood and the surface characteristics of plasma polymerized films”, Materials Chemistry and Physics, 48 (1997) 71.
36.A. Shah, The Global Catheters Market, BCC Research, (2008) 386-393.
37.吳耀庭、黃曉鳳、溫俊祥,“電漿表面處理在生醫材料上之應用”,工業材料雜誌,212 (2004) 90。
38.D. Beyer, W. Knoll, H. Rigsdorf, J. W. Wang, R. B. Timmons and P. Sluka, “Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether”, Journal of Biomedical Materials Research, 36 (1997) 181.
39.A. Grill, In cold plasma in material fabrication, IEEE, New York, (1994) 135-140.
40.洪昭南、郭有斌,“電漿反應器與原理”,化工技術,9 (2001) 156。
41.Y. C. Quan, J. Joo and D. Jung, “Polymer-like organic thin films deposited by plasma enhanced chemical vapor deposition using the para-xylene precursor as low dielectric constant interlayer dielectrics for multilevel metallization”, Japanese Journal of Applied Physics, 38 (1999) 1356.
42.Y. C. Quan, S. Yeo, C. Shim, J. Yang and D. Jung, “Significant improvement of electrical and thermal properties of low dielectric constant plasma polymerized paraxylene thin films by postdeposition H2+He plasma treatment”, Journal of Applied Physics, 89 (2001) 1402.
43.S. Sohn, K. Kim, S. Kho, D. Jung and J. H. Boo, “Effects of plasma polymerized para-xylene intermediate layers on characteristics of flexible organic light emitting diodes fabricated on polyethylene terephthalate substrates”, Journal of Alloys and Compounds, 449 (2008) 191.
44.S.P. Louh, I. C. Leu and M. H. Hon, “Preparation and characterization of plasma deposited para-xylene a-C:H films with low dielectric constant”, Diamond and Related Materials, 14 (2005) 1005.
45.G. R. Yang, S. Ganguli, J. Karcz, W. N. Gill and T. M. Lu, “High deposition rate parylene films”, Journal of Crystal Growth, 183 (1998) 385.
46.Q. Yu, J. Dffeyes and H. Yasuda, “Engineering the surface and interface of parylene C coatings by low temperature plasmas”, Progress in Organic Coatings, 41 (2001) 247.
47.A. Khabari and F. K. Urban III, “Partially ionized beam deposition of parylene”, Journal of Non-Crystalline Solids, 351 (2005) 3536.
48.B. Mitu, S. Bauer-Gogonea, H. Leonhartsberger, M. Lindner, S. Bauer and G. Dinescu, “Plasma-deposited parylene-like thin films: process and material properties”, Surface and Coatings Technology, 174-175 (2003) 124.
49.J. L. He, C. K. Chen and M. H. Hon, “Microstructure and properties of Ti-Si-N films prepared by plasmaenhanced chemical vapor deposition”, Materials Chemistry and Physics, 44 (1996) 9.
50.J. L. He and W. L Chang, “Carbon nitride films incorporated with metal by rf plasma-enhanced chemical vapor deposition”, Thin Solid Films, 312 (1998) 86.
51.Y. X. Liu, J. L. He, X. C. Chang, C. K. Lin and David Lin, “Water Permeation Study of Plasma Polymerized TMDSO for Organic Light Emitting Diode Application”, The International Conference On Metallurgical Coatings and Thin Films (ICMCTF), CP-8, April 23-April 27, 2007, San Diego, California, USA.
52.張修誠、何主亮、陳克昌,“利用電漿聚合HMDSZ鍍膜保護金屬物件之研究”,中華民國防蝕工程學會94年年會論文集,(2005) 1193~1202。
53.http://search.be.acros.com/, Chemexper chemical directory.
54.A. G. Osborn and D. R. Douslin, “Vapor-pressure relations for 15 hydrocarbons”, Journal of Chemical Engineering Data, 19 (1974) 114.
55.ASTM D3359-02, “Standard test method for measuring adhesion by tape test”, American Society for Testing and Materials, 2002.
56.ASTM D3363-05, “Standard Test Method for Film Hardness by Pencil Test”, American Society for Testing and Materials, 2005.
57.ISO 10993-5, “Biological evaluation of medical devices-Part 5:Tests for in vitro cytotoxicity”, International Organization for Standardization, Switzerland, 1999.
58.M. T. Heneka, P. A. Lschmann, M. Gleichmann, M. Weller, J. B. Schulz, U. Wullner and T. Klockgether, “Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis FActor–α/lipopolysaccharide”, Journal of Neurochemistry, 71 (1998) 88–94.
59.Y. Fang, X. Zheng, R. Chen and Z. Chen, “Electrolysis-generated ferrate at porous cylindrical cast iron anode and its application to degradation of organic wastewater”, Journal of Chemical Industry and Engineering, 57 (2006) 151.
60.G. Q. Wang, L. F. Yao, J. Shen and G. M. Wu, “Parylene used for moisture-proof films”, Journal of Tongji University(Natural Science), 33 (2005) 1337.
61.Z. W. Zhang, Z. J. Zhong, C. Y. Wang, B. Li and B. Yu, “Fabrication of the parylene film by the method of hot-wire assistance”, Vacuum, 4 (2002) 29.
62.http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/infrared.htm#ir1, “Infrared Spectroscopy”, Department of Chemistry, Michign State University, 2005.
63.W. W. Lee and P. S. Ho, “Low-dielectric-constant materials for ULSI interlayer-dielectric applications”, Materials Researc Society Bulletin, 22 (1997) 19.
64.C. Shim and D. Jung, “Relationship between C=C bonds and mechanical properties of carbon rich low-k films deposited by plasma enhanced chemical vapor deposition”, Japanese Journal of Applied Physics, 43 (2004) 940.
65.T. Heitz, B. Drévillon, C. Godet and J. E. Bourée, “C-H bonding of polymer-like hydrogenated amorphous carbon films investigated by in-situ infrared ellipsometry”, Carbon, 37 (1999) 771.
66.B. Smith, Infrared spectral interpretation : a systematic approach, CRC press, New York, (1999) 423-431.
67.K. C. Chen, T. D. Yeh, C. Y. Lin and J. L. He, “A comparative Study of pure D. C. and asymmetric bipolar pulsed D. C. ion nitriding of titanium metal”, Journal of Materials Science and Engineering, 35 (2003) 24.
68.林金仕、江忠憲、唐謙仁, “以脈衝式直流磁控濺鍍法製鍍二氧化矽之光學特性及沉積速率研究”,真空科技,20 (2007) 22
69.K.L. Mittal, Contact angle, Wettability and Adhesion,(2006) 70-76.
70.L. Y. Huang, K. W. Xu, J. Lu, B. Guelorget and H. Chen, “Nano-scratch and fretting wear study of DLC coatings for biomedical application”, Diamond and Related Materials, 10 (2001) 1448-1456.
71.黃昱瑋,類鑽碳膜保護塗層在生醫材料Ti-6Al-4V之應用研究,國立中興大學材料工程學研究所碩士論文,台中 (2003)。
72.J. I. B. Wilson, M. P. Bonnar and B. M. Burnside, “Optimisation of plasma polymers for hydrophobic coatings”, The Institution of Electrical Engineers, (1999) 5/1.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top