|
Chapter1 1.J. Nelson, The Physics of Solar Cells, Imperial College Press, 2003. 2.http://en.wikipedia.org/wiki/Timeline_of_solar_cells 3.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J Am Chem Soc 2009, 131 (17), 6050-+. 4.J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, ''6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell'', Nanoscale, 3 (2011), 4088-93. 5.H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, ''Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%'', Sci Rep, 2 (2012), 591. 6.M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 338, 643-647. 7.H. P. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu and Y. Yang, Science 2014, 345, 542-546. 8.J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Energy & Environmental Science, 2013, 6, 1739-1743.
9.M. J. Carnie, C. Charbonneau, M. L. Davies, J. Troughton, T. M. Watson, K. Wojciechowski, H. Snaith and D. A. Worsley, Chem Commun, 2013, 49, 7893-7895. 10.K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate and H. J. Snaith, Energ Environ Sci, 2014, 7, 1142-1147.
Chapter 2 1.http://solarwiki.ucdavis.edu/The_Science_of_Solar/Solar_Basics/B._Basics_of_the_Sun/V._Air_Mass 2.Nelson, Jenny. The Physics of Solar Cells. London: Imperial College Press, 2003. 3.http://commons.wikimedia.org/wiki/File:PnJunction-PV-E.PNG 4.http://pveducation.org/pvcdrom/solar-cell-operation/short-circuit-current 5.http://www.ni.com/white-paper/7230/en/ 6.M. Bashahu, A. Habyarimana, Renewable Energy 1995, 6, 129-138. 7.Naoki Koide, Ashraful Islam, Yasuo Chiba, Liyuan Han, J. Photochem. Photobiol., A 2006, 182, 296-305. 8.S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
Chapter 3 1.G.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin, Scanning electron microscopy and X-ray microanalysis, Plenum Press, New York and London (1981). 2.https://en.wikipedia.org/wiki/Evaporation_(deposition) 3.https://en.wikipedia.org/wiki/Quantum_efficiency 4.https://en.wikipedia.org/wiki/Atomic_force_microscopy 5.Natda Wetchakun, Burapat Incessungvorn, Khatcharin Wetchakun, and Sukon Phanichphant, ''Influence of Calcination Temperature on Anatase to Rutile Phase Transformation in Tio2 Nanoparticles Synthesized by the Modified Sol–Gel Method'', Materials Letters, 82 (2012), 195-98. 6.Dorian A. H. Hanaor, and Charles C. Sorrell, ''Review of the Anatase to Rutile Phase Transformation'', Journal of Materials Science, 46 (2010), 855-74. 7.H. D. Megaw, Nature 1945, 155, 484-485. 8.Z. Cheng and J. Lin, CrystEngComm 2010, 12, 2646. 9.D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess and A. M. Guloy, Science 1995, 267, 1473-1476.
Chapter 4 Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006, 442 (7100), 282-6. 2. Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q., Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science 2014, 39 (4), 627-655. 3. Al-Saleh, M. H.; Sundararaj, U., A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 2009, 47 (1), 2-22. 4. Mechrez, G.; Suckeveriene, R. Y.; Zelikman, E.; Rosen, J.; Ariel-Sternberg, N.; Cohen, R.; Narkis, M.; Segal, E., Highly-Tunable Polymer/Carbon Nanotubes Systems: Preserving Dispersion Architecture in Solid Composites via Rapid Microfiltration. ACS Macro Letters 2012, 1 (7), 848-852. 5. Ma, P.-C.; Siddiqui, N. A.; Marom, G.; Kim, J.-K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing 2010, 41 (10), 1345-1367. 6. Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P., Liquid sensing: smart polymer/CNT composites. Materials Today 2011, 14 (7-8), 340-345. 7. Antunes, R. A.; de Oliveira, M. C. L.; Ett, G.; Ett, V., Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources 2011, 196 (6), 2945-2961. 8. Dang, Z.-M.; Yuan, J.-K.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Hu, G.-H., Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Progress in Materials Science 2012, 57 (4), 660-723. 9. H Yang, TJ Shin, L Yang, K Cho, CY Ryu, Z Bao, Effect of mesoscale crystalline structure on the field‐effect mobility of regioregular poly (3‐hexyl thiophene) in thin‐film transistors. Advanced Functional Materials 2005,15 (4), 671-676 10. Sirringhaus, H.; Tessler, N.; Friend, R. H, Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 1998, 280, 1741-1744 11. Padinger F, Rittberger RS, Sariciftci NS, Effects of Postproduction Treatment on Plastic Solar Cells. Advanced Functional Materials, 2003,13,85-88. 12. Kymakis, E.; Koudoumas, E.; Franghiadakis, I.; Amaratunga, G. A. J., Post-fabrication annealing effects in polymer-nanotube photovoltaic cells. Journal of Physics D: Applied Physics 2006, 39 (6), 1058-1062. 13. F. D. Giacomo, S. Razza, F. Matteocci, A. D''Epifanio, S. Licoccia, T.M. Brown, A.D. Carlo, High efficiency CH 3 NH 3 PbI (3− x) Cl x perovskite solar cells with poly (3-hexylthiophene) hole transport layer . J. Power Sources 251, 2014 ,152-156. 14. Musumeci, A. W.; Silva, G. G.; Liu, J.-W.; Martens, W. N.; Waclawik, E. R., Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films. Polymer 2007, 48 (6), 1667-1678. 15. Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y., Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). Journal of Applied Physics 2005, 98 (4), 043704. 16. Lu, L.; Luo, Z.; Xu, T.; Yu, L., Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano letters 2013, 13 (1), 59-64. 17. Ng, A.; Yiu, W. K.; Foo, Y.; Shen, Q.; Bejaoui, A.; Zhao, Y.; Gokkaya, H. C.; Djurisic, A. B.; Zapien, J. A.; Chan, W. K.; Surya, C., Enhanced performance of PTB7:PC(7)(1)BM solar cells via different morphologies of gold nanoparticles. ACS Appl Mater Interfaces 2014, 6 (23), 20676-84. 18. X. Yang, C.-C. Chueh, C.-Z. Li, H.-L. Yip, P. Yin, H. Chen, W.-C. Chen, and A. K-Y. Jen, High-efficiency polymer solar cells achieved by doping plasmonic metallic nanoparticles into dual charge selecting interfacial layers to enhance light trapping, Advanced Energy Materials 3 , 2013, 666 – 673. 19. Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F., First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C 2013, 117 (27), 13902-13913. 20. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131, 2009,6050. 21. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345 (2014) 542 – 546. 22. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2, 591. 23. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano letters 2013, 13 (4), 1764-9. 24. A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency, Nano letters.2014,14, 2591-2596 . 25. Zhu, Z.; Ma, J.; Wang, Z.; Mu, C.; Fan, Z.; Du, L.; Bai, Y.; Fan, L.; Yan, H.; Phillips, D. L.; Yang, S., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 2014, 136 (10), 3760-3. 26. Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G., 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. The Journal of Physical Chemistry C 2014, 118 (30), 16567-16573. 27. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 2013, 7 (6), 486-491. 28. Zhang, Y.; Liu, W.; Tan, F.; Gu, Y., The essential role of the poly(3-hexylthiophene) hole transport layer in perovskite solar cells. Journal of Power Sources 2015, 274, 1224-1230. 29. Shih, Y. C.; Wang, L. Y.; Hsieh, H. C.; Lin, K. F., Enhancing the photocurrent of perovskite solar cells via modification of the TiO2/CH3NH3PbI3heterojunction interface with amino acid. J. Mater. Chem. A 2015, 3 (17), 9133-9136. 30. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials 2014, 24 (1), 151-157. 31. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science 2012,338, 643−647. 32. Chi, L.; Swainson, I.; Cranswick, L.; Her, J.-H.; Stephens, P.; Knop, O., The ordered phase of methylammonium lead chloride CH3ND3PbCl3. Journal of Solid State Chemistry 2005, 178 (5), 1376-1385. 33. F. D. Clacomo, S. Razza, F. Matteocci, A. D. Epifanio, S. Licoccia, T. M. Brown, and A. D. Carlo, High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly (3-hexylthiophene) hole transport layer. Journal of Power Sources 2014, 251, 152 – 156 . 34. Brown, P. J.; Thomas, D. S.; Köhler, A.; Wilson, J. S.; Kim, J.-S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H., Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Physical Review B 2003, 67 (6). 35. Wu, M.-C.; Lin, Y.-Y.; Chen, S.; Liao, H.-C.; Wu, Y.-J.; Chen, C.-W.; Chen, Y.-F.; Su, W.-F., Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes. Chemical Physics Letters 2009, 468 (1-3), 64-68. 36. Dennler, G.; Scharber, M. C.; Brabec, C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv Mater 2009, 21 (13), 1323-1338. 37. Chen, L.-M.; Hong, Z.; Li, G.; Yang, Y., Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Adv Mater 2009, 21 (14-15), 1434-1449. 38. R. J. Kline, M. D. McGehee, E.N. Kadnikova, J. Liu, J.M. J. Fréchet, and M.F. Toney, Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight, Macromolecules 2005 ,3312-3319. 39. Jimison, L. H.; Toney, M. F.; McCulloch, I.; Heeney, M.; Salleo, A., Charge-Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3-hexylthiophene). Adv Mater 2009, 21 (16), 1568-1572 40. A. W. Musumeci, G. G. Silva, J.-W. Liu, W. N. Martens, and E. R. Waclawik, Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films, Polymer 2007,48, 1667 – 1678. 41. Shrotriya, V.; Wu, E. H.-E.; Li, G.; Yao, Y.; Yang, Y., Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl Phys Lett 2006, 88 (6), 064104. 42. Choulis, S. A.; Kim, Y.; Nelson, J.; Bradley, D. D. C.; Giles, M.; Shkunov, M.; McCulloch, I., High ambipolar and balanced carrier mobility in regioregular poly(3-hexylthiophene). Appl Phys Lett 2004, 85 (17), 3890. 43. Bo, X. Z.; Lee, C. Y.; Strano, M. S.; Goldfinger, M.; Nuckolls, C.; Blanchet, G. B., Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor. Appl Phys Lett 2005, 86 (18), 182102. 44. Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Adv Mater 2006, 18 (5), 572-576. 45. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano letters 2013, 13 (4), 1764-9. 46. Leijtens, T.; Lim, J.; Teuscher, J.; Park, T.; Snaith, H. J., Charge density dependent mobility of organic hole-transporters and mesoporous TiO(2) determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells. Adv Mater 2013, 25 (23), 3227-33. 47. Zhang, W.; Saliba, M.; Stranks, S. D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H. J., Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano letters 2013, 13 (9), 4505-10.
|