跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林秉毅
研究生(外文):Ping-Yi Lin
論文名稱:交流驅動器之弱磁控制技術發展
論文名稱(外文):Development of Field-Weakening Control Techniques for AC Drives
指導教授:賴炎生
口試委員:楊勝明廖聰明蔡明祺劉昌煥
口試日期:2013-07-27
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電機工程系博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:111
中文關鍵詞:弱磁控制感應馬達驅動表面黏著式永磁同步馬達驅動內嵌式永磁同步馬達驅動變頻器空間向量調變
外文關鍵詞:Field-weakening controlFlux-weakening controlInduction motor drivesSurface-mounted permanent magnet synchronous motor drivesInterior permanent magnet synchronous motor drivesInverterSVPWM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:547
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在發展交流驅動器之弱磁控制技術,所研究的交流馬達為感應馬達、表面黏著式永磁同步馬達及內嵌式永磁同步馬達。在此提出一種新的電壓控制技術是應用到空間向量調變中的切換週期與有效切換時間和來作為高速區間偵測。當對於應用於脈波寬度調變之變頻器中之有效切換時間和大於切換周期時,d-軸電流命令將進行修正使得電壓軌跡由六邊形中的內切圓至六邊形而達到擴展直流鏈電壓之利用率。因此,可增加輸出功率及輸出轉矩並在弱磁操作下達成;當有效切換時間和小於切換周期時,則可使馬達在定轉矩區間運轉。
在模擬與實驗的結果說明在感應馬達之驅動上不僅可增加速度至額定轉速的4倍以上,且可操作至弱磁第二區間下工作;表面黏著式永磁同步馬達與內嵌式永磁同步馬達其轉速至少可增加至1.5倍額定轉速以上,而在有限速度驅動系統之定義下並可操作在弱磁第一區間工作。由轉矩-速度與功率-速度的特性比較可證明所提出之法則可使得交流馬達在弱磁區間下可更有效率的操作。
所提出的法則不需要額外建表及可減少對於馬達參數的靈敏度,實驗比較與模擬結果將確認所提出法則的特徵以及所提出法則的可行性。


The main theme of this dissertation is to develop field-weakening control techniques for AC Drives. It is well known that AC motors, such as induction motors (IMs), surface-mounted permanent magnet synchronous motors (SPMSMs), and interior permanent magnet synchronous motors (IPMSMs), have been investigated in this dissertation. The proposed new voltage control technique applies the switching period and active switching times of space vector modulation (SVM) for high speed region detection. As the summation of active switching times for PWM control of inverter is greater than the switching period, the d-axis current reference is modified and thereby moving the voltage trajectory from inscribed circle of hexagon to the hexagon to extend the DC-link voltage utilization. Therefore, significantly increasing the output power and torque under field-weakening operation can be achieved. As the summation of active switching times is less than the switching period, constant torque region is retained.
The simulation and experimental results have shown that the IM drives not only can increase speed over 4 times of rated speed, but also can operate at field-weakening region II. SPMSM and IPMSM drives can increase speed over 1.5 times of rated speed at least, but both types of PMSM can only operate at flux-weakening region I since the definition of finite speed drive system. And the comparison of Torque-Speed and Power-Speed characteristics shows that the proposed method can make AC motors working at more efficient operation in field-weakening region.
The presented method does not require look-up-table and reduces the parameter sensitivity. Experimental comparison and simulation results are presented to confirm these special features and the feasibility of the proposed method.


Abstract i
摘要 iii
誌謝 iv
Table of Contents v
List of Tables viii
List of Illustrations ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey of Field-Weakening Control 1
1.2.1 For Induction Motor Drives 2
1.2.2 For Surface-Mounted Permanent Magnet Synchronous Motor Drives 5
1.2.3 For Interior Permanent Magnet Synchronous Motor Drives 8
1.3 Objectives and Contributions 11
1.4 Organization 11
Chapter 2 Space Vector Modulation Technique 12
2.1 Fundamental of Space Vector Modulation Technique 12
2.2 Space Vector Modulation for the Extension of DC-Link Voltage Utilization 14
2.3 Simulation and Experimental Results 17
2.4 Summary 28
Chapter 3 Field-Weakening Control of Induction Motor Drives 29
3.1 Introduction 29
3.2 Induction Motor Model and Voltage and Current Constraints 30
3.2.1 Constant Torque Region 31
3.2.2 Field-Weakening Region I 32
3.2.3 Field-Weakening Region II 33
3.3 Voltage Trajectory Control for Field-Weakening Control 34
3.4 Simulation and Experimental Results 36
3.5 Summary 50
Chapter 4 Flux-Weakening Control of Surface-Mounted Permanent Magnet Synchronous Motor Drives 51
4.1 Introduction 51
4.2 Surface-Mounted Permanent Magnet Synchronous Motor Model and Voltage and Current Constraints 52
4.2.1 Constant Torque Region 55
4.2.2 Flux-Weakening Region I 56
4.2.3 Flux-Weakening Region II 56
4.2.4 Maximum torque trajectory under Finite Speed Drive System 57
4.3 Voltage Trajectory Control for Flux-Weakening Control 57
4.4 Simulation and Experimental Results 60
4.5 Summary 71
Chapter 5 Flux-Weakening Control of Interior Permanent Magnet Synchronous Motor Drives 72
5.1 Introduction 72
5.2 Interior Permanent Magnet Synchronous Motor Model and Maximum Torque per Ampere Control 73
5.3 Voltage and Current Constraints 74
5.3.1 Constant Torque Region 75
5.3.2 Flux-Weakening Region I 76
5.3.3 Flux-Weakening Region II 77
5.4 Voltage Trajectory Control for Flux-Weakening Control 78
5.5 Simulation and Experimental Results 79
5.6 Summary 91
Chapter 6 Conclusions and Further Studies 92
6.1 Conclusions 92
6.2 Further Studies 93
References 94
Appendix A The Derivation of Fundamental of Space Vector Modulation under Hexagonal Operation 99
Appendix B The Derivation of Maximum Slip Frequency and q-axis Current Limitation under Field-Weakening Region II 102
Appendix C The Derivation of d-axis Stator Flux, d-axis and q-axis Current Limitation under Flux-Weakening Region II 105
Nomenclature 107
Vita 110
Publication List 111


[1] X. Xu and D. W. Novotny, “Selection of the flux reference for induction machine drives in the field weakening region,” IEEE Transactions on Industry Applications, vol. 28, no. 6, pp. 1353-1358, Nov./Dec. 1992.
[2] S-H Kim and S-K Sul, “Maximum torque control of an induction machine in the field weakening region,” IEEE Transactions on Industry Applications, vol. 31, no. 4, pp. 787-794, Jul./Aug. 1995.
[3] R. S. Wieser, “Optimal rotor flux regulation for fast accelerating induction machines in the field weakening region,” in Proc. IEEE Industry Applications Society, pp. 401-409, Oct. 1997.
[4] M-H Shin, D-S Hyun and S-B Cho, “Maximum torque control of stator flux-oriented induction machine drive in the field weakening region,” in Proc. IEEE Industry Applications Society, pp. 1461-1467, Oct. 2000.
[5] S-H Song, J-W Choi and S-K Sul, “Transient torque maximizing strategy of induction machine in the field weakening region,” in Proc. IEEE PESC, pp. 1569-1574, May 1998.
[6] S-H Kim and S-K Sul, “Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region,” IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 512-518, Aug. 1997.
[7] A. Bunte, H. Grotstollen and P. Krafka, “Field weakening of induction motors in a very wide region with regard to parameter uncertainties,” in Proc. IEEE PESC, pp. 944-950, June 1996.
[8] M. Mengoni, L. Zarri, A. Tani, G. Serra and D. Casadei, “Stator flux vector control of induction motor drive in the field weakening region,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 941-949, March 2008.
[9] M. Wlas, H. Abu-Rub and J. Holtz, “Speed sensorless nonlinear control of induction motor in the field weakening region,” in Proc. IEEE EPE-PMEC, pp. 1084-1089, Sept. 2008.
[10] H. Abu-Rub and J. Holtz, “Maximum torque production in rotor field oriented control of an induction motor at field weakening,” in Proc. IEEE ISIE, pp. 1159-1164, June 2007.
[11] H. Abu-Rub and J. Holtz, “Rotor oriented nonlinear control system of induction motors operating at field weakening,” in Proc. IEEE IECON, pp. 1085-1090, Nov. 2007.
[12] H. Abu-Rub, H. Schmirgel and J. Holtz, “Sensorless control of induction motors for maximum steady-state torque and fast dynamics at field weakening,” in Proc. IEEE Industry Applications Society, pp. 96-103, Oct. 2006.
[13] H. Grotstollen and A. Bunte, “Control of induction motor with orientation on rotor flux or on stator flux in a very wide field weakening region – experimental results,” in Proc. IEEE ISIE, pp. 911-916, June 1996.
[14] D. Casadei, G. Serra, A. Tani and L. Zarri, “A robust method for field weakening operation of induction motor drives with maximum torque capability,” in Proc. IEEE Industry Applications Society, pp. 111-117, Oct. 2006.
[15] L. Harnefors, K. Pietilainen and L. Gertmar, “Optimum-seeking field weakening control of induction motor drives,” in Proc. IEE Power Electronics and Variable Speed Drives, pp. 176-181, Sept. 2000.
[16] D. Casadei, G. Serra, A. Tani and L. Zarri, “Field-weakening control schemes for high-speed drives based on induction motors: a comparison,” in Proc. IEEE PESC, pp. 2159-2166, June 2008.
[17] G. Gallegos-Lopez, F. S. Gunawan and J. E. Walters, “Current control of induction machines in the field-weakened region,” IEEE Transactions on Industry Applications, vol. 43, no. 4, pp. 981-989, Jul./Aug. 2007.
[18] M. Mengoni, L. Zarri, A. Tani, G. Serra and D. Casadei, “A comparison of four robust control schemes for field-weakening operation of induction motors,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 307-320, Jan. 2012.
[19] A. Tripathi, A. M. Khambadkone and S. K. Panda, “Dynamic control of torque in overmodulation and in the field weakening region,” IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 1091-1098, July 2006.
[20] A. B. Jidin, N. R. B. N. Idris, A. H. B. M. Yatim, M. E. Elbuluk and T. Sutikno, “A wide-speed high torque capability utilizing overmodulation strategy in DTC of induction machines with constant switching frequency controller,” IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2566-2575, May 2012.
[21] S. Morimoto, M. Sanada, and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Transactions on Industrial Applications, vol. 30, no.4, pp.920-926, July/August 1994.
[22] S. Morimoto, M. Sanada, and Y. Takeda, “Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives,” IEEE Transactions on Industrial Applications, vol. 30, no. 6, pp. 1632-1637, November/December 1994.
[23] S. D. Sudhoff and H. J. Hegner, “A flux-weakening strategy for current-regulated surface-mounted permanent-magnet machine drives,” IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp.431-437, Sep. 1995.
[24] T. S. Kwon and S. K. Sul, “Novel anti-windup of a current regulator of a surface-mounted permanent-magnet motor for flux weakening control,” IEEE Transactions on Industrial Applications, vol. 42, no. 5, pp. 1293-1300, Sep. /Oct. 2006.
[25] G. Y. Choi, M. S. Kwak, T. S. Kwon and S. K. Sul, “Novel flux-weakening control of an IPMSM for quasi six-step operation,” in Proc. IEEE IAS Annual Meeting, pp. 1315-1321, Sep. 2007.
[26] J. H. Song, J. M. Kim, and S. K. Sul, “A new robust SPMSM control to parameter variations in flux weakening region,” in Proc. IEEE IECON, pp. 1193-1198, 1996.
[27] J. H. Song and S. K. Sul, “Torque maximizing control of permanent magnet synchronous motor under voltage and current limitations of PWM inverter,” in Proc. APEC, vol. 2, pp. 758-763, March 1996.
[28] D. S. Maric, S. Hiti, C. C. Stancu, and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet machine drives employing space vector modulation,” in Proc. IEEE IECON, vol. 1, pp. 508-512, 1998.
[29] D. S. Maric, S. Hiti, C. C. Stancu, J. M. Nagashima and D. B. Rutledge, “Two flux weakening schemes for Surface-mounted permanent-magnet synchronous drives design and transient response considerations,” in Proc. ISIE, pp. 673–678, 1999.
[30] R. U. Lenke, R. W. D. Doncker, M. S. Kwak, T. S. Kwon and S. K. Sul, “Field weakening control of interior permanent magnet machine using improved current interpolation technique,” IEEE PESC, pp. 1-5, June 2006.
[31] A. K. Adnanes, W. Sulkowski, L. A. Aga and L. Norum, “A fully digital permanent magnet synchronous motor drive with flux weakening,” IEE Proc. Electrical Machines and Drives, pp. 227-231, Sep. 1991.
[32] K. Sun, Q. Wei, L. Huang, K. Matsuse, “An over modulation method for PWM-inverter-fed IPMSM drive with single current sensor,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3395-3404, Oct. 2010.
[33] M. Tursini, E. Chiricozzi, R. Petrella, “Feedforward flux weakening control of surface mount permanent magnet synchronous motors accounting for resistive voltage drop,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 440-448, Jan. 2010.
[34] G. Pellegrino, R. I. Bojoi and P. Guglielmi, “Unified direct-flux vector control for AC motor drives,” IEEE Transactions on Industrial Applications, vol. 47, no. 5, pp. 2093-2102, Sep. /Oct. 2011.
[35] T. M. Jahns, “Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive,” IEEE Transactions on Industry Applications, vol. IA-23, no. 4, pp. 681-686, July/August 1987.
[36] S. R. Macminn and T. M. Jahns, “Control techniques for improved high-speed performance of interior PM synchronous motor drives,” IEEE Transactions on Industry Applications, vol. 27, no. 5, pp. 997-1004, Sep./Oct. 1991.
[37] J. M. Kim, K. Park, S. J. Kang, S. K. Sul and J. L. Kwon, “Improved dynamic performance of interior permanent magnet synchronous motor drive in flux-weakening operation,” in Proc. IEEE PESC, vol. 2, pp. 1562-1567, June 1996.
[38] J. M. Kim and S. K. Sul, “Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation,” IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 43-48, Jan./Feb. 1997.
[39] B. H. Bae, N. Patel, S. Schulz and S. K. Sul, “New flux weakening for high saliency interior permanent magnet motor,” in Proc. IEEE IAS, vol. 2, pp. 898-905, Oct. 2003.
[40] R. U. Lenke, R. W. De Donker, M. S. Kwak, T. S. Kwon and S. K. Sul, “Flux weakening control of interior permanent magnet machine using improved current interpolation technique,” in Proc. IEEE PESC, pp. 1-5, June 2006.
[41] S. M. Sue and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Transactions on Industrial Electronics, vol. 55, no.1, pp. 340-347, Jan. 2008.
[42] C. Jo, J. Y. Seol and I. J. Ha, “Field-weakening control of IPM motors with significant effect of magnetic saturation and stator resistance,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1330-1340, March 2008.
[43] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Transactions on Industry Applications, vol. 45, no. 5, pp. 1619-1627, Sep./Oct. 2009.
[44] A. Consoli, G. Scelba, G. Scarcella and M. Cacciato, “An Effective Energy-Saving Scalar Control for Industrial IPMSM Drives,” IEEE Transactions on Industrial Electronics, vol. 60, no.9, pp. 3658-3668, Sept. 2013.
[45] G. H. Choi, J. K. Seok and R. D. Lorenz, “Wide-Speed Direct Torque and Flux Control for Interior PM Synchronous Motors Operating at Voltage and Current Limits,” IEEE Transactions on Industry Applications, vol. 49, no. 1, pp. 109-117, Jan./Feb. 2013.
[46] Y. D. Yoon and S. K. Sul, “New flux weakening control for surface mounted permanent magnet synchronous machine using gradient descent method,” in Proc. The 7th International Conference on Power Electronics, pp. 1208-1212. Oct. 2007.
[47] T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted permanent magnet synchronous machines with infinite constant power speed ratio,” in Proc. International Conference on Electrical Machines and Systems, pp. 440-445, Oct. 2007.
[48] H. W. van der Broeck, H. C. Skudelny, and G. V. Stanke, “Analysis and realization of a pulsewidth modulator based on voltage space vectors,” IEEE Transactions on Industry Applications, vol. 24, no. 1, pp. 142-150, Jan./Feb.1988.
[49] Y. S. Lai and S. R. Bowes, “A universal space vector modulation strategy based on regular-sampled pulse-width modulation,” in Proc. IEEE IECON 22nd International Conference, vol. 1, pp.120-126, Aug. 1996.
[50] S. R. Bowes and Y. S. Lai, “The relationship between space vector modulation and Regular-sampled pulse-width modulation,” IEEE Transactions on Industrial Electronics, vol. 44, no. 5, pp. 670-679, Oct.1997.
[51] Y. S. Lai and S. R. Bowes, “A new sub-optimal pulse-width modulation technique for per-phase modulation and space vector modulation,” IEEE Transactions on Energy Conversion, vol. 12, no. 4, pp. 310-316, Dec. 1997.
[52] Y. S. Lai, “Modeling and universal controller for vector-controlled induction motor drives, ” IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 23-32, March 2003.
[53] W. L. Soong and T. J. E. Miller, “Field-weakening performance of brushless synchronous AC motor drives,” IEE Proceedings Electric Power Applications, vol. 141, no. 6, pp. 331-340, 1994.
[54] H. K. Kim, J. Hartwig and R. D. Lorenz, “Using on-line parameter estimation to improve efficiency of IPM machine drives,” in Proc. IEEE PESC, vol. 2, pp. 815-820, June 2002.
[55] Y. D. Yoon, W. J. Lee and S. K. Sul, “New flux weakening control for high saliency interior permanent magnet machine without any tables,” in Proc. IEEE Power Electronic and Application, pp. 1-7, Sept., 2007.
[56] D. C. Lee and G. M. Lee, “A novel overmodulation technique for space-vector PWM inverters,” IEEE Transactions on Power Electronics, vol. 13, no. 6, pp. 1144-1151, Nov. 1998.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊