跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭鴻志
研究生(外文):KUO, HONG-JHIH
論文名稱:於交織正交分頻多工存取上行系統之基於修正型傳播子方法的載波頻率偏移估測
論文名稱(外文):Carrier Frequency Offsets Estimation Based on Modified Propagator Methods for Interleaved OFDMA Uplink Systems
指導教授:張安成張安成引用關係
指導教授(外文):CHANG, ANN-CHEN
口試委員:洪瑞鍾張翠蘋
口試委員(外文):HUNG, JUI-CHUNGCHANG, TSUI-PING
口試日期:2017-06-30
學位類別:碩士
校院名稱:嶺東科技大學
系所名稱:資訊科技系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:42
中文關鍵詞:交織正交分頻多工存取載波頻率偏移傳播運算子LU分解QR分解多項式求根泰勒級數展開廣義特徵值疊代
外文關鍵詞:interleaved OFDMAcarrier frequency offsetpropagator methodLU factorizationQR factorizationpolynomial rootingTaylor series expansiongeneralized eigenvalueiterative
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文係處理於交織正交分頻多工存取(Orthogonal Frequency Division Multiple Access, OFDMA)上行系統之簡單和有效的殘餘載波頻率偏移(Carrier Frequency Offset, CFO)估測,研究的目標是從估計器之目標函數的有效性和計算複雜性以及頻譜搜尋的計算複雜度來進行。基於接收資料矩陣的結構代數特性之傳播子方法(Propagator Method, PM)已經被專用於訊號源的定位,且傳播子方法(PM)已經被證實具有低的計算負載且於無雜訊或高訊號雜訊比(Signal to Noise Ratio, SNR)環境下是有效的。無論如何,傳播子方法(PM)對抗雜訊的能力並不強健。經結合順向逆向(forward-backward, FB)自相關矩陣和傳播子方法(PM),此所提出的基於頻譜搜尋的FBPM估測器可以提高CFO的估測精準度。首先,本論文之目的係驗證使用FB自相關矩陣的LU和QR因子分解對FBPM估測器於存有雜訊的情況下是有效的。但是對於基於頻譜搜尋估測器,它們在計算負荷上也是昂貴的。因此,本論文還提出了基於多項式求根版本的處理方法,用於減少頻譜搜尋所衍生的計算負荷。同時於交織正交分頻多工存取(OFDMA)上行系統亦建議一種最大輸出功率估測方法,其基於給予某一初始值後去尋找基於一階泰勒級數展開之新的CFO向量,此一尋找新的CFO向量之問題可以被形成為廣義特徵值(generalized eigenvalue)問題的封閉解,並容易求得CFO估測值;另外,由於更精確的殘餘CFO估測可以提供更精確的殘餘CFO補償,本論文亦呈現具有較少計算負荷的疊代估測方式來增進所提估測器的性能,最後,提供了一些電腦模擬結果來說明在單一個OFDMA資料區塊下所提出的盲目估測方法的有效性。
This thesis deals with simple and effective residual carrier frequency offset (CFO) estimation for interleaved orthogonal frequency division multiple access (OFDMA) uplink systems. The goal of research is proceed from the effectiveness and computational complexity of the estimator's objective function, and the computational complexity of the spectrum search. The propagator method (PM) has been dedicated to source localization which is based on the structural algebraic properties of the received data matrix. It has been shown that the PM has low computational load and is efficient in nonnoisy or high signal-to-noise ratio (SNR) environments. However, propagator is not robust to noise. In conjunction with the forward-backward (FB) autocorrelation matrix and PM, the presented searching-based FBPM estimator can improve the CFO estimate accuracy. First, this thesis aims at demonstrating the usefulness of LU and QR factorizations of the FB autocorrelation matrix for the FBPM estimators are efficient in noisy situations. But for the searching-based estimators, they are also computationally expensive. Therefore, the polynomial rooting version approaches are also presented for reducing search computational load. Meanwhile, a maximal output power estimation method is suggested which finds a new CFO vector based on first order Taylor series expansion of one initially given for interleaved OFDMA uplink systems. The problem of finding the new CFO vector is formulated as the closed form of a generalized eigenvalue problem, which allows one to readily solve it. Since raising the accuracy of residual CFO estimation can provide more accurate residual CFO compensation, this thesis also presents an iterative estimate approach with less computation load to improve the CFO estimation performance. Finally, several computer simulation results are provided for illustrating the effectiveness of the proposed blind estimate approaches under a single OFDMA data block.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 ix
符號說明 x
第一章 緒論 1
1.1 文獻探討 1
1.2 研究動機與目的 3
1.3 論文架構 4
第二章 問題形成 5
2.1 正交分頻多工存取系統簡介 5
2.2 交織OFDMA上行系統訊號模型 8
2.3 傳統之載波頻率偏移估測器 11
2.3.1 MVDR估測器 11
2.3.2 root-MVDR估測器 11
2.3.3 MUSIC和root-MUSIC估測器 13
2.3.4 ESPRIT估測器 14
第三章 所提出的估測器 17
3.1 基於頻譜搜尋之PM估測器 17
3.2 基於求根處理方式之root-FBPM 19
3.3 使用上三角矩陣的PM估測器 20
3.4 基於求根處理方式之root-U-FBPM估測器 22
3.5 基於求根處理方式之root-R-FBPM估測器 23
3.6 決策導向型估測器 23
第四章 電腦模擬結果 27
4.1 計算複雜度分析 27
4.2 模擬結果與性能比較 33
4.2.1 第一部份:估測器的一般行為 34
4.2.2 第二部份:性能比較 36
第五章 結論 40
參考文獻 41

[1]H.T. Hsieh and W.R. Wu, “Blind maximum-likelihood carrier-frequency-offset estimation for interleaved OFDMA uplink systems,” IEEE Trans. Vehicular Technology, vol. 60, no. 1, pp. 160 173, January 2011.
[2]K. Lee , S.H. Moon, S.R. Lee, and I. Lee, “Low complexity pilot assisted carrier frequency offset estimation for OFDMA uplink systems,” IEEE Trans. Consumer Electronics, vol. 11, no. 8, pp. 2690 2695, August 2012.
[3]M.O. Pun, M. Morelli, and C.C.J Kuo, “Maximum-likelihood synchronization and channel estimation for OFDMA uplink transmissions,” IEEE Trans. Communications, vol. 54, no. 4, pp. 726 736, April 2006.
[4]A.C. Chang, “Blind CFO estimation based on decision directed MUSIC technique for interleaved uplink OFDMA,” Journal of the Chinese Institute of Engineers, vol. 38, no. 5, pp. 573 582, October 2015.
[5]J.H. Lee, S. Lee, and K.J. Bang, “Carrier frequency offset estimation using ESPRIT for interleaved OFDMA uplink systems,” IEEE Trans. Vehicular Technology, vol. 56, no. 5, pp. 3227 3231, September 2007.
[6]R. Miao, J. Xiong, L. Gui, and J. Sun, ‘‘Iterative approach for multiuser carrier frequency offset estimation in interleaved OFDMA uplink,’’ IEEE Trans. Consumer Electronics, vol. 55, no. 3, pp. 1039 1044, August 2009.
[7]H.L. Van Trees, Optimum Array Processing. John Wiley, New York, 2002.
[8]C.C. Shen and A.C. Chang, “Blind CFO estimation based on decision directed MVDR approach for interleaved uplink OFDMA systems,” IEICE Trans. Communications, vol. E97-B, no. 1, pp. 137 145, January 2014.
[9]J. Munier and G. Y. Delisle, “Spatial analysis using new properties of the cross-spectral matrix,” IEEE Trans. Signal Processing, vol. 39, no. 3, pp. 746 749, March 1991.
[10]C.T. Pan, “On the existence and computation of rank revealing LU factorizations,” Linear Algebra and Its Applications, vol. 316, no. 1 3, pp. 199 222, September 2000.
[11]T.F. Chan, “Rank revealing QR factorizations,” Linear Algebra and Its Applications, vol. 88-89, pp. 67–82, April 1987.
[12]J.J. Van de Beek, and P.O. Borjesson, “A time and frequency synchronization scheme for multiuser OFDM,” IEEE Journal of Selected Areas in Communications, vol. 17, no.11, pp. 1900 1913, November 1999.
[13]L.J. Zhao, J.D Li and J.Y. Pang, “Carrier frequency offsets estimation based on ML and ESPRIT method for OFDMA uplink,” IEEE 20th International Conference on Advanced Information Networking and Applications, April 2006.
[14]S. Bourennane, C. Fossati, and J. Marot, “About noneigenvector source localization methods,” EURASIP Journal of Advances in Signal Processing, May 2008 doi:10.1155/2008/480835
[15]Y.H. Choi, “Robust adaptive array using Taylor series expansion,” Electronics Letters, vol. 47, no. 15, pp. 840 841, July 2011.
[16]C.C. Lee and J.H. Lee, “Eigenspace-based adaptive array beamforming with robust capabilities,” IEEE Trans. Antennas and Propagation, vol. 45, no. 12, pp. 1711 1716, December 1997.
[17]A.C. Chang and C.C. Shen, “Blind carrier frequency offset estimation based on polynomial rooting for interleaved uplink OFDMA,” IEICE Trans. Fundamentals, vol. E96-A, no. 10, pp. 2057–2060, October 2013.
[18]G.H. Golub and C.H. van Loan, Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, USA, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊