跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顧皓仁
研究生(外文):Hau-Jen Ku
論文名稱:超高靈敏度之全織物型穿戴式觸覺感應裝置
論文名稱(外文):Fiber-Based Ultrasensitive Wearable Textile Sensing Device
指導教授:郭霽慶
指導教授(外文):Chi-Ching Kuo
口試委員:游洋雁李文亞
口試日期:2016-06-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:靜電紡絲、電子皮膚、穿戴式感應裝置、電阻型壓力感測器、全織物
外文關鍵詞:electrospinningelectronic skinwearable sensing deviceresistive pressure sensorfiber-based
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,可與人體直接互動的電子裝置興起,讓電子皮膚和穿戴式感應裝置的需求大幅增加,壓力感測是直觀人機介面的重要功能,以低成本、製程簡單的策略,製造出柔軟、可拉伸的高敏度壓力感測器是往後實務應用的關鍵。在此篇研究中,我們以靜電紡絲奈米纖維結合銀奈米顆粒,製作出三明治結構的電阻型壓力感測器,整套系統成本低廉、製程簡單;藉由調控電紡奈米纖維的參數,可達到最小低於0.2 kPa的感測靈敏度,導通電阻值達到10 Ω以下。並透過控制電紡奈米纖維的密度,得到數個不同範圍的壓力感測區間,在拉伸(應變ε=0.5)和彎折(曲率1/3mm-1) 的循環測試後,仍維持穩定的感測性能,本系統有良好的拉伸性、彎折性、可回復性、快速的反應時間、超高靈敏度與可微控感測區間的獨特特性,全織物型的精巧設計可以和貼身織物結合或直接與人體連結。我們已成功應用於智能開關和脈搏感測,智能開關與LED和衣物結合後,仍然可以維持其性能。脈搏感測可以即時監控正常成年人的心跳次數。未來可望廣泛應用和商業化在各種與人體互動的觸覺電子裝置上。
In recent years, the electronic devices contacting with humans directly has been gained popularity and lead to substantial increase in demand of electronic skins and wearable sensing devices. Tactile sensing has been increasingly important in human–computer interactions (HCI). The development of flexible, stretchable and highly sensitive pressure sensor with a low-cost and facile fabrication technique is critical for the practical application in the future. In this research, we presented a sandwich-structured resistive pressure sensor based on electrospun elastomeric nanofibers and silver nanoparticals by using a simple and low-cost process. Our pressure sensor enabled to detect below 0.2 KPa pressures and had an excellent electrical property below 10 Ω by regulating the parameters of electrospun nanofibers. The threshold of resistance switching range was tunable by modifying the density of electrospun dielectric layer. After stretching (strain ε = 0.5) and above bending (curvature 1/3mm-1) cycle testing, it was able to maintain sensing performance. The r showed good cycle stability and a short response time. Full fiber-based design can combine with clothes, or link with the human body directly. We have been successfully applied in intelligent switches and pulse sensing. We observed that intelligent switch combined with LED and clothes were still able to maintain the performance. Pulse sensing can monitor real-time beats of normal adults. We expect that fiber-based pressure sensor will be highly useful in the design of next generation electronic systems and commercialized in variety of the interactive tactile electronic devices.
中文摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 電子皮膚-觸覺感壓裝置 3
2.1.1 電容式的壓力感測器 4
2.1.2 電阻式的壓力感測器 7
2.2 智能紡織品 9
2.2.1 觸覺感測手套 10
2.2.2 電阻式壓力感測織物 11
2.2.3 電容式壓力感測織物 12
2.3 導電纖維 13
2.3.1 彈性纖維和銀奈米顆粒的複合材料導電纖維 14
2.3.2 可噴塗的彈性纖維導體 15
2.3.3 以導電纖維為基礎的壓力感測器 16
2.4 靜電紡絲技術 17
2.4.1 靜電紡絲之簡介 17
2.4.2 靜電紡絲之原理與獨特性質 19
2.4.3 本實驗室之靜電紡絲領域探討 23
第三章 實驗步驟 26
3.1 實驗材料 26
3.2 實驗設備 27
3.3 實驗流程 28
3.3.1 製備織物型柔性導電膜 28
3.3.2 製備全織物型壓力感測器 28
3.3.3 靜電紡絲製程最佳化 29
3.3.4 彈性奈米纖維膜結構型態的探討 29
3.3.5 壓力感測器的感測特性與應用 29
3.3.6 實驗流程圖 30
3.4 測試與分析儀器 31
3.4.1 場發型掃描電子顯微鏡(FE-SEM) 31
3.4.2 X光繞射分析儀(XRD) 31
3.4.3 能量散佈分析儀(EDS) 32
3.4.4 紫外線/可見光分光光譜儀(UV) 33
3.4.5 動態熱機械分析儀(DMA) 33
3.4.6 四點探針量測儀 34
第四章 結果與討論 35
4.1 場發型掃描電子顯微鏡(FE-SEM) 35
4.1.1 靜電紡絲奈米纖維型態分析 35
4.1.2 全織物型壓力感測器纖維型態分析 37
4.2 紫外線/可見光分光光譜儀(UV) 41
4.3 X光繞射分析儀(XRD) 42
4.4 能量散佈分析儀(EDS) 43
4.5 動態熱機械分析儀(DMA) 44
4.6 四點探針量測儀 45
4.6.1 靈敏度 45
4.6.2 重複性 49
4.6.3 彎折性 50
4.6.4 拉伸性 52
4.6.5 反應時間 56
4.7 應用 57
4.7.1 智能開關 57
4.7.2 脈搏感測 60
第五章 結論 62
第六章 參考文獻 63
1.Tok JBH, Bao Z, "Recent advances in flexible and stretchable electronics, sensors and power sources", Science China Chemistry, 55, 2012, 718-725.

2.Choi S, Park J, Hyun W, Kim J, Kim J, Lee YB, Song C, Hwang HJ, Kim JH, Hyeon T, Kim DH, "Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy", ACS Nano, 9, 2015, 6626-6633.

3.Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W, "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires", Nat Commun, 5, 2014, 3132.

4.Takamatsu S, Lonjaret T, Ismailova E, Masuda A, Itoh T, Malliaras GG, "Wearable Keyboard Using Conducting Polymer Electrodes on Textiles", Adv Mater, 2015.

5.Chen LY, Tee BC, Chortos AL, Schwartz G, Tse V, Lipomi DJ, Wong HS, McConnell MV, Bao Z, "Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care", Nat Commun, 5, 2014, 5028.

6.Schwartz G, Tee BC, Mei J, Appleton AL, Kim do H, Wang H, Bao Z, "Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring", Nat Commun, 4, 2013, 1859.

7.Wang X, Gu Y, Xiong Z, Cui Z, Zhang T, "Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals", Adv Mater, 26, 2014, 1336-1342.

8.Dempsey SJ, Szablewski M, Atkinson D, "Tactile sensing in human–computer interfaces: The inclusion of pressure sensitivity as a third dimension of user input", Sensors and Actuators A: Physical, 232, 2015, 229-250.

9.Joo Y, Byun J, Seong N, Ha J, Kim H, Kim S, Kim T, Im H, Kim D, Hong Y, "Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor", Nanoscale, 7, 2015, 6208-6215.

10.Mannsfeld SC, Tee BC, Stoltenberg RM, Chen CV, Barman S, Muir BV, Sokolov AN, Reese C, Bao Z, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nat Mater, 9, 2010, 859-864.

11.Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z, "An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film", Nat Commun, 5, 2014, 3002.

12.Chou HH, Nguyen A, Chortos A, To JW, Lu C, Mei J, Kurosawa T, Bae WG, Tok JB, Bao Z, "A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing", Nat Commun, 6, 2015, 8011.

13.Büscher GH, Kõiva R, Schürmann C, Haschke R, Ritter HJ, "Flexible and stretchable fabric-based tactile sensor", Robotics and Autonomous Systems, 63, 2015, 244-252.

14.Li Y, Samad YA, Liao K, "From cotton to wearable pressure sensor", J Mater Chem A, 3, 2015, 2181-2187.

15.Meyer J, Lukowicz P, Tröster G, "Textile pressure sensor for muscle activity and motion detection", Wearable Computers, 2006 10th IEEE International Symposium on, 2006, 69-72.

16.Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I, "Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite", ACS Nano, 8, 2014, 5154-5163.

17.Tee BCK, Chortos A, Dunn RR, Schwartz G, Eason E, Bao Z, "Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics", Advanced Functional Materials, 24, 2014, 5427-5434.

18.Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim MB, Jeon S, Chung DY, Bae J, Park J, Jeong U, Kim K, "Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres", Nat Nanotechnol, 7, 2012, 803-809.

19.Vural M, Behrens AM, Ayyub OB, Ayoub JJ, Kofinas P, "Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites", ACS Nano, 9, 2014, 336-344.

20.Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE, Lee T, "Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics", Adv Mater, 27, 2015, 2433-2439.

21.Darrell H Reneker IC, "Nanometre diameter fibres of polymer, produced by electrospinning", Nanotechnology, 7, 1996, 216-223.

22.Yu-Qin Wana QG, Ning Panac, "Thermo-electro-hydrodynamic model for electrospinning process", Freund Publishing House Ltd, 5, 2004, 5-8.

23.Chi Wang C-HH, Jian-Hua Lin, "Scaling Laws in Electrospinning of Polystyrene Solutions", Macromolecules, 39, 2006, 7662-7672.

24.Yoo J-K, Kim J, Jung YS, Kang K, "Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage", Advanced Materials, 24, 2012, 5452-5456.

25.Yarin AL, "Coaxial electrospinning and emulsion electrospinning of core-shell fibers", Polymers for Advanced Technologies, 22, 2011, 310-317.

26.Li M, Long Y-Z, Yang D, Sun J, Yin H, Zhao Z, Kong W, Jiang X, Fan Z, "Fabrication of one dimensional superfine polymer fibers by double-spinning", Journal of Materials Chemistry, 21, 2011, 13159.

27.Raghavan P, Lim D-H, Ahn J-H, Nah C, Sherrington DC, Ryu H-S, Ahn H-J, "Electrospun polymer nanofibers: The booming cutting edge technology", Reactive and Functional Polymers, 72, 2012, 915-930.

28.Huang M, Si Y, Tang X, Zhu Z, Ding B, Liu L, Zheng G, Luo W, Yu J, "Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes", Journal of Materials Chemistry A, 1, 2013, 14071.

29.Li D, Xia Y, "Electrospinning of nanofibers: reinventing the wheel?", Advanced materials, 16, 2004, 1151-1170.

30.Shin YM, Hohman MM, Brenner MP, Rutledge GC, "Experimental characterization of electrospinning: the electrically forced jet and instabilities", Polymer, 42, 2001, 09955-09967.

31.Yarin AL, Koombhongse S, Reneker DH, "Taylor cone and jetting from liquid droplets in electrospinning of nanofibers", Journal of Applied Physics, 90, 2001, 4836.

32.Bhattacharjee PK, Rutledge GC, "Electrospinning and Polymer Nanofibers: Process Fundamentals", 2011, 497-512.

33.Reneker DH, Yarin AL, Fong H, Koombhongse S, "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning", Journal of Applied Physics, 87, 2000, 4531-4547.

34.Teo WE, Ramakrishna S, "A review on electrospinning design and nanofibre assemblies", Nanotechnology, 17, 2006, R89-R106.

35.Fong H, Chun I, Reneker DH, "Beaded nanofibers formed during electrospinning", Polymer, 40, 1999, 4585-4592.

36.Reneker DH, Chun I, "Nanometre diameter fibres of polymer, produced by electrospinning", Nanotechnology, 7, 1996, 216.

37.Munir MM, Suryamas AB, Iskandar F, Okuyama K, "Scaling law on particle-to-fiber formation during electrospinning", Polymer, 50, 2009, 4935-4943.

38.Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS, "Electrospinning of nanofibers", Journal of Applied Polymer Science, 96, 2005, 557-569.

39.Yarin AL, Zussman E, Wendorff JH, Greiner A, "Material encapsulation and transport in core–shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels", J Mater Chem, 17, 2007, 2585-2599.

40.Chen Z, Foster MD, Zhou W, Fong H, Reneker DH, Resendes R, Manners I, "Structure of poly (ferrocenyldimethylsilane) in electrospun nanofibers", Macromolecules, 34, 2001, 6156-6158.

41.Jaeger R, Schönherr H, Vancso G, "Chain packing in electro-spun poly (ethylene oxide) visualized by atomic force microscopy", Macromolecules, 29, 1996, 7634-7636.

42.Buchko CJ, Chen LC, Shen Y, Martin DC, "Processing and microstructural characterization of porous biocompatible protein polymer thin films", Polymer, 40, 1999, 7397-7407.

43.Chen J-Y, Kuo C-C, Lai C-S, Chen W-C, Chen H-L, "Manipulation on the morphology and electrical properties of aligned electrospun nanofibers of poly (3-hexylthiophene) for field-effect transistor applications", Macromolecules, 44, 2011, 2883-2892.

44.Lin CJ, Hsu JC, Tsai JH, Kuo CC, Lee WY, Chen WC, "High‐Performance FETs Prepared From Electrospun Aligned P4TDPP Nanofibers", Macromolecular Chemistry and Physics, 212, 2011, 2452-2458.

45.Chiu Y-C, Chen Y, Kuo C-C, Tung S-H, Kakuchi T, Chen W-C, "Synthesis, Morphology, and Sensory Applications of Multifunctional Rod–Coil–Coil Triblock Copolymers and Their Electrospun Nanofibers", ACS applied materials & interfaces, 4, 2012, 3387-3395.

46.Lin JC, Lee WY, Kuo CC, Li C, Mezzenga R, Chen WC, "Synthesis, morphology, and field‐effect transistor characteristics of new crystalline–crystalline diblock copolymers of poly (3‐hexylthiophene‐block‐steryl acrylate)", Journal of Polymer Science Part A: Polymer Chemistry, 50, 2012, 686-695.

47.Chen LN, Chiu YC, Hung Jr J, Kuo CC, Chen WC, "Multifunctional Electrospun Nanofibers Prepared from Poly ((N‐isopropylacrylamide)‐co‐(N‐hydroxymethylacrylamide)) and Their Blends with 1, 2‐Diaminoanthraquinone for NO Gas Detection", Macromolecular Chemistry and Physics, 215, 2014, 286-294.

48.Chen L-N, Kuo C-C, Chiu Y-C, Chen W-C, "Ultra metal ions and pH sensing characteristics of thermoresponsive luminescent electrospun nanofibers prepared from poly (HPBO-co-NIPAAm-co-SA)", RSC Advances, 4, 2014, 45345-45353.

49.Huang YS, Kuo CC, Shu YC, Jang SC, Tsen WC, Chuang FS, Chen CC, "Highly Aligned and Single‐Layered Hollow Fibrous Membranes Prepared from Polyurethane and Silica Blends Through a Two‐Fluid Coaxial Electrospun Process", Macromolecular Chemistry and Physics, 215, 2014, 879-887.

50.Chen B-Y, Kuo C-C, Huang Y-S, Lu S-T, Liang F-C, Jiang D-H, "Novel Highly Selective and Reversible Chemosensors Based on Dual-Ratiometric Fluorescent Electrospun Nanofibers with pH-and Fe3+-Modulated Multicolor Fluorescence Emission", ACS applied materials & interfaces, 7, 2015, 2797-2808.

51.Chen YY, Kuo CC, Chen BY, Chiu PC, Tsai PC, "Multifunctional polyacrylonitrile‐ZnO/Ag electrospun nanofiber membranes with various ZnO morphologies for photocatalytic, UV‐shielding, and antibacterial applications", Journal of Polymer Science Part B: Polymer Physics, 53, 2015, 262-269.

52.Huang Y-S, Kuo C-C, Huang C-C, Jang S-C, Tsen W-C, Chuang F-S, Chen B-Y, Chen J-J, Chow J-D, Shu Y-C, "Novel highly aligned, double-layered, hollow fibrous polycarbonate membranes with a perfectly tightly packed pentagonal pore structure fabricated using the electrospinning process", RSC Advances, 5, 2015, 88857-88865.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top