跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱聖
研究生(外文):Yu-ShengChen
論文名稱:以物聯網為基礎之緊急示警服務-以淹水為例
論文名稱(外文):Towards the Development of IoT-based Emergency Alert Service - An Example of Flood Alert
指導教授:洪榮宏洪榮宏引用關係
指導教授(外文):Jung-Hong Hong
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:150
中文關鍵詞:物聯網共通示警協議智慧型淹水示警推播系統感測網路賦能
外文關鍵詞:Internet of ThingsSensor Web EnablementCommon Alerting ProtocolCAP template
相關次數:
  • 被引用被引用:0
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
受到地球環境及氣候變遷之影響,近年來天然災害事件頻傳,對於人類之生命財產威脅程度遠勝過往,各類災害發生之次數、受影響人口與經濟損失均急遽攀升,如何透過有效之預警機制提升全民之災害應變能力與降低災害損失,是世界各國高度重視之課題。面對廣大之領土及分散之人民,無論災害威脅之大小,各專業單位都必須負責本身業務範疇之示警發布,確保應變機制可正確啟動,以保障人民生命與財產之安全。但災害之威脅瞬息萬變,短時間內就可能造成巨大之衝擊,過去之示警技術卻受到跨域異質性、空間尺度有限、傳播方式固定及缺乏即時應變彈性等因素之限制,運作上有其極限,因而造成無謂之生命與財產損失。
物聯網藉由大規模之連網裝置與感測器佈署,加上網路之即時傳遞,使連網物件可因應環境改變而發展為自動化運作之系統,這樣的優勢正可以彌補與改善過去示警與應變機制中大範圍資訊蒐集、快速資料流通交換、示警資訊傳播及即時性應變之缺點。本研究將物聯網之概念導入防災系統,以淹水示警為對象,提出創新之運作架構,善用可廣設感測器及物物相連之優勢,規劃包括固定式與移動式之感測器佈署模式,可同時滿足易淹水地區持續性監測及緊急發生淹水地區即時性示警之需求。示警資訊之流通則採取雙軌之運作模式,在災害地區以Zigbee方式廣播輕量化之示警資訊,附近之用路者透過相容之連網裝置即可自動取得示警內容,避免進入危險之區域。另一管道則將分散於各地感測器所產生之觀測資訊持續透過物聯網彙整於資料庫,除透過遵循OGC SWE之標準服務模式達成跨機關間感測資訊之即時分享及互操作應用系統發展外,並可以單一感測器為基本單元,透過樣版而在接近自動化之狀況下建立符合我國「共同示警協議」規定之示警內容。發展機制可依感測器持續更新之狀態自動更新示警之內容,使民眾全方位持續掌握其周遭區域之災害威脅。
物聯網之引入可有效擴展防救災體系對於災害與環境之掌握程度及示警資訊傳播之能量與即時性,對現行之示警運作機制有極大之助益。本研究之成果顯示其偵測範圍雖然較小,但若可適度安裝於關鍵之位置,可彌補中央單位目前示警內容空間尺度不足之問題,由此構成更為綿密之示警機制。本文雖以淹水情境為主,但整體之架構可持續擴增更多種類之示警訊息及標準化之使用者裝置,在未來創造全新思維之災害預警系統。
關鍵字:物聯網、共通示警協議、智慧型淹水示警推播系統、感測網路賦能

Towards the Development of IoT-based Emergency Alert Service - An Example of Flood Alert

Yu-Sheng Chen
Jung-Hong Hong
Department of Geomatics, National Cheng Kung University

SUMMARY

When facing emergency threats from natural hazard (e.g., flood), alert messages must be effectively distributed to the public in advance to avoid or reduce human lives and property loss. By connecting devices in the internet and hosting an interacting mechanism between devices, we argue the Internet of Things (IoT) provides a brand new perspective to the development of automatic alerting systems. With steadily decreasing cost, sensors can be easily and widely deployed at either fixed location of important facilities or places arbitrarily selected for monitoring purposes to continuously generate observations. The proposed IoT-enabled alerting system prototypes have two ways for alert messages transmission: the in-situ broadcasting and the internet alert publication. Once the threshold value is reached, the in-site mode directly broadcasts alert messages to clients in the neighbor, while the internet mode publishes and distributes interoperable alert messages following the CAP standard to the public. Furthermore, the observation data is available via standardized web service following SWE standards, which enables domain experts to develop integrated applications. To improve the accuracy and efficiency of the alert information, we further introduce the expert-driven templates to the automatic generation of alert messages. Comparing to the traditional alert mechanism, the IoT-enabled alert system fully demonstrate its superior capability on the improvement of mobility and wide-coverage of phenomena monitoring, immediate and effective broadcasting, interoperability of alert messages, automatic issuing and processing of alert messages and the potential to become a robust and reliable sources of hazard-related applications.

Key words: Internet of Things, Sensor Web Enablement, Common Alerting Protocol, CAP template.

INTRODUCTION

In recent years, natural hazard has been a major threat to the people, an effective and robust mechanism that can integrate all resources together for reducing lives and property causality should always be given the highest priority. Efforts have been made for predicting incoming threat and issuing early warning to the people within the threaten area, so that have sufficient time for preparation. We believe the emergence of the IoT technology brings a new perspective to the alerting systems due to many reasons. Firstly of all, the price of sensors drops significantly, which allows authorized agencies to widely deploy sensors with relatively lower cost. Secondly, as the number of internet-connected devices dramatically increases, the sensor observation and alert messages can be easily transmitted and distributed. Finally, the trend of open data creates a new resource platform where data from the IoT devices can be shared in an interoperable way.

An IoT-enabled architecture for alert systems is proposed in this paper. The design is based on the principles of sensor deployment, message broadcasting, interoperable content and automatic processing. Sensors can be deployed at any chosen places to adapt to different scenario needs. Whenever any emergency situations happen, the alert system automatically detects the threat and issues alerts following the Common Alerting Protocol (CAP) to the people within the impacted area. Via in-situ broadcasting or internet publication, clients are made aware of any threat in their neighborhood.

MATERIALS AND METHODS

Fig. 1 illustrates the system architecture proposed in this research. After sensors are deployed at important facilities or places that can provide early warning, they can continuously monitor the changing phenomena. Once the observation values reach the specified threshold value, the alerting module is automatically triggered. Two alert modes are developed to adapt to different application scenarios. The in-situ mode broadcasts alert messages to nearby devices via ZigBee. Even without internet connection, the in-situ mode can still supply immediate warning. The internet mode generates CAP-based alerts and distributes the alerts via internet, which enables subscribers to receive standardized alert messages and further develop add-value applications. Meanwhile, the sensor observations are opened accessible following the Sensor Web Enablement standards, which enables the development of cross-agencies collaborative data exchange mechanism.

Figure 1. The flood warning system

The deployment of sensors plays a major role in the success of the alert systems. Two patterns of sensor deployment are proposed. The fixed-location type is to deploy sensors at preselected locations, normally used for area that has long history of flooding. The mobile type deploys sensors according to the real flood situations, such that the sensors can be flexibly moved to any places with emergence situations. As the monitoring unit can be easily deployed, it offers the flexibility of quick installation and easy adjustment. The basic structure of broadcasting messages is as follows:

〈disaster type〉〈district_code〉〈road_code〉〈sensor type+ serial number〉〈GPS coordinates〉

This standardized design allows the clients to uniquely interpret and identify from which sensor the warning message is sent and automatically transformed to both voice and text message to draw users’ attentions.

In addition to the direct warning, the measurement from sensors can be transmitted to the database via Wi-Fi. We develop a cross-platform real-time observation sharing mechanism based on the SWE standards. As various types of observations are accessible via the same standardized web service interface, the cross-agency data sharing becomes much simpler. Authorized agencies can issue alerts following the CAP-TWP to the public based upon the collected observations. To improve the efficiency of generating CAP-TWP alert messages, alert templates are developed according to the operating procedures of issuing alerts and the sensor deployment. The successful use of templates implies most of the alert contents can be determined beforehand and significantly improve the efficiency for generating new alerts. We also develop a map-based website, which provides visual inspection of real-time observations and alert situations.

Figure 2. Cross-platform warning architecture

RESULTS AND DISCUSSION
In this research, we use Arduino to implement the control of the monitoring unit and the broadcasting of alert messages. We use SOS servers in the server sides, which enables to publish observations as a web service. We also use C# and JavaScript to for automatically processing cross-platform sensing data sharing simulation, and implement the CAP templates and different alert modes programming in the experiment. Finally, we host a map based website for real-time observations and the locations of alerts. The following lists the implementation results from the test:

 Alert messages are successfully broadcasted to clients to provide early warning.
 The monitoring of flooding area is more flexible for different scenarios based on the two types of sensor deployment.
 Observations are shared by different agencies following the SWE standards, which enables the development of extended interoperable applications.
 The map-based website allows the general public to access real-time observations and locations under threats.
 The designed CAP templates and automatic processing mechanism can determine almost 100% of the alert contents.

CONCLUSION
The IoT technology provides an innovative perspective for the alerting systems. The implemented system prototype successfully broadcasts alerts to nearby devices to get drivers’ or disaster operators’ attention about the coming threat. The two types of sensor deployment offer the flexibility to cover wider coverage and adapt to the continuously changing status in reality. Under the open standards and the IoT coupling architecture, CAP-based alerts can be automatically generated and published. As far as the effectiveness, efficiency and automation are concerned, the IoT-enabled architecture fully demonstrates its potential to revolutionize the future development of alerting mechanism.
目錄
摘要 I
Towards the Development of IoT-based Emergency Alert Service - An Example of Flood Alert II
致謝 VII
表目錄 XI
圖目錄 XIII
第一章、緒論 1
1.1、研究背景 1
1.2、研究目標 3
1.3、研究流程 4
1.4、論文架構 6
第二章、文獻回顧 7
2.1、物聯網 7
2.1.1、物聯網架構 7
2.1.2、物聯網標準 13
2.1.3、物聯網防災系統 15
2.2、感測網 16
2.2.1、標準化網路服務 17
2.2.2、Sensor Web Enablement標準 18
2.2.3、SWE之運作及流通 20
2.3、災害示警資訊 28
2.3.1、示警資訊網路化 29
2.3.2、示警資訊標準化 32
2.3.3、標準化示警資訊應用 34
第三章、示警資訊之流通架構 37
3.1、緊急示警系統架構 37
3.1.1、感測網及示警系統整合 37
3.1.2、淹水示警系統 38
3.2、示警內容情境分析 41
3.2.1、固定式感測器佈署模式 42
3.2.2、移動式感測器佈署模式 45
3.3、示警訊息廣播模式 49
3.3.1、緊急示警訊息廣播 49
3.3.2、開放式示警訊息推播 51
第四章、標準化示警資訊發布及共享模式 59
4.1、示警資訊發布架構 59
4.2、標準化網路服務 60
4.2.1、感測器標準引入 60
4.2.2、系統自動化運作機制 64
4.2.3、資源整合與視覺化展示圖台 68
4.3、標準化示警資訊 70
4.3.1、示警資訊之內容設計 71
4.3.2、示警之運作週期 82
4.3.3、示警資訊之上架、下架機制 84
4.4、CAP樣版與快速示警建置 93
4.4.1、CAP樣版分析及統計成果 93
4.4.2、CAP樣版及自動化示警建制機制 98
第五章、系統實作與情境模擬 101
5.1、系統實作測試 101
5.1.1、系統運作環境與架構 101
5.1.2、硬體裝置簡介 102
5.1.3、軟體暨技術簡介 105
5.2、系統運作測試 108
5.2.1、緊急示警廣播 108
5.2.2、標準化網路服務 113
5.2.3、標準化示警發布 117
5.3、示警運作情境及應用 119
5.3.1、標準化網路服務整合應用 120
5.3.2、單一示警運作情形 123
5.3.3、多示警運作之情境模擬 132
第六章、結論與建議 140
參考文獻 143
陳書齊. (2015). 具互操作性考量之示警資訊架構建立與運作.
盧孟明, 陳佳正, & 林昀靜. (2007). 1951-2005 年台灣極端降雨事件發生頻率之變化. 大氣科學, 35(2), 87-103.
陳亮全. (2011). 氣候變遷與災害衝擊.
蔡維哲. (2011). 物聯網發展趨勢與政府政策研究. 交通大學科技管理研究所學位論文, 1-88.
林子軒. (2013). 智慧防災監測資訊整合平台之研發. 交通大學電機與控制工程系所學位論文, 1-70.
黃濟寰. (2014). 應用低耗電藍牙技術於室內定位之研究.
台中市政府. (2014). 糾正台中民生地下道.
楊尊華. (2014). 防災減災守護家園關鍵72 小時.
嘉義縣政府. (2013). 嘉義縣道路及橋樑封閉或改道作業程序.
公路總局. (2013). 公路總局道路封閉通知資料說明.
國家災害防救科技中心. (2014). 國內目前現有事件分類、名稱與代碼對照表.
彰化縣政府. (2015). 彰化縣車行地下道封閉標準作業程序.
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer networks, 38(4), 393-422.
Artigas, F., Chun, S., & Sookhu, Y. (2009). Real-time ocean surge warning system, meadowlands district of New Jersey. Paper presented at the Proceedings of the 10th Annual International Conference on Digital Government Research: Social Networks: Making Connections between Citizens, Data and Government.
Ashton, K. (2009). That ‘internet of things’ thing. RFiD Journal, 22(7), 97-114.
Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58(1), 49-69.
Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Computer communications, 30(7), 1655-1695.
Bisdikian, C. (2001). An overview of the Bluetooth wireless technology. IEEE Commun Mag, 39(12), 86-94.
Botterell, A. (2003). An advanced EAS relay network using the common alerting protocol (CAP).
Botts, M., Percivall, G., Reed, C., & Davidson, J. (2008). OGC® sensor web enablement: Overview and high level architecture GeoSensor networks (pp. 175-190): Springer.
Darianian, M., & Michael, M. P. (2008). Smart Home Mobile RFID-Based Internet-of-Things Systems and Services. 116-120. doi: 10.1109/icacte.2008.180
Delin, K. A., Jackson, S. P., Burleigh, S. C., Johnson, D. W., Woodrow, R. R., & Britton, J. T. (2003). The jpl sensor webs project: Fielded technology. Proceeding of Space Mission Challenges for Information Technology.
Domdouzis, K., Kumar, B., & Anumba, C. (2007). Radio-Frequency Identification (RFID) applications: A brief introduction. Advanced Engineering Informatics, 21(4), 350-355.
Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., . . . Newling, T. (2004). Patterns: service-oriented architecture and web services: IBM Corporation, International Technical Support Organization.
Ferro, E., & Potorti, F. (2005). Bluetooth and Wi-Fi wireless protocols: a survey and a comparison. Wireless Communications, IEEE, 12(1), 12-26.
Gigli, M., & Koo, S. (2011). Internet of things: services and applications categorization. Advances in Internet of Things, 1(02), 27.
Giusto, D., Iera, A., Morabito, G., & Atzori, L. (2010). The internet of things: 20th Tyrrhenian workshop on digital communications: Springer Science & Business Media.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst., 29(7), 1645-1660. doi: 10.1016/j.future.2013.01.010
Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., & Savio, D. (2010). Interacting with the soa-based internet of things: Discovery, query, selection, and on-demand provisioning of web services. Services Computing, IEEE Transactions on, 3(3), 223-235.
Gunes, A. E., & Kovel, J. P. (2000). Using GIS in emergency management operations. Journal of Urban Planning and Development, 126(3), 136-149.
Heidorn, P. B. (2008). Shedding light on the dark data in the long tail of science. Library Trends, 57(2), 280-299.
Henry, P. S., & Luo, H. (2002). WiFi: what's next? Communications Magazine, IEEE, 40(12), 66-72.
Hitt, M. A., & Anderson, C. (2007). The Long Tail: Why the Future of Business Is Selling Less of More: JSTOR.
Jazayeri, M. A., Huang, C.-Y., & Liang, S. H. (2012). TinySOS: design and implementation of interoperable and tiny web service for the internet of things. Paper presented at the Proceedings of the First ACM SIGSPATIAL Workshop on Sensor Web Enablement.
Jirka, S., Bröring, A., & Stasch, C. (2009). Applying OGC Sensor Web Enablement to risk monitoring and disaster management. Paper presented at the GSDI 11 world conference, Rotterdam, Netherlands.
Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: the internet of things architecture, possible applications and key challenges. Paper presented at the Frontiers of Information Technology (FIT), 2012 10th International Conference on.
Kinney, P. (2003). Zigbee technology: Wireless control that simply works. Paper presented at the Communications design conference.
Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. Paper presented at the Internet of Things (WF-IoT), 2014 IEEE World Forum on.
Krzhizhanovskaya, V. V., Shirshov, G., Melnikova, N., Belleman, R. G., Rusadi, F., Broekhuijsen, B., . . . Bubak, M. (2011). Flood early warning system: design, implementation and computational modules. Procedia Computer Science, 4, 106-115.
Laituri, M., & Kodrich, K. (2008). On line disaster response community: People as sensors of high magnitude disasters using internet GIS. Sensors, 8(5), 3037-3055.
Landt, J. (2005). The history of RFID. Potentials, IEEE, 24(4), 8-11.
Lee, J.-S., Su, Y.-W., & Shen, C.-C. (2007). A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. Paper presented at the Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE.
Lee, S. (2014). Mobile gateway System for Ubiquitous system and Internet of Things Application.
Liang, S., Chen, S., Huang, C., Li, R., Chang, Y., Badger, J., & Rezel, R. (2010). Capturing the long tail of sensor web. Paper presented at the Proceedings of International Workshop on Role of Volunteered Geographic Information in Advancing Science, In conjunction with GIScience 2010.
Liang, S. H., Croitoru, A., & Tao, C. V. (2005). A distributed geospatial infrastructure for Sensor Web. Computers & Geosciences, 31(2), 221-231.
Liang, S. H., Tao, C. V., & Croitoru, A. (2003). THE DESIGN AND PROTOTYPE OF A DISTRIBUTED GEO-SPATIAL INFRASTRUCTURE FOR SMART SENSORS W EBS. Proceedings of the 6th Agile, Lyon, France, 303-311.
Liu, S.-j., & Zhu, G.-q. (2014). The application of GIS and IOT technology on building fire evacuation. Procedia engineering, 71, 577-582.
Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks towards the internet of things: A survey. Paper presented at the Software, Telecommunications and Computer Networks (SoftCOM), 2011 19th International Conference on.
Mandal, S., Saha, D., & Banerjee, T. (2005). A neural network based prediction model for flood in a disaster management system with sensor networks. Paper presented at the Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005.
Markovic, N., Stanimirovic, A., & Stoimenov, L. (2009). Sensor web for river water pollution monitoring and alert system. Paper presented at the 12th AGILE International Conference on Geographic Information Science “Advances in GIScience, Hannover, Germany, ISSN.
Meng, X., Wang, J., & Gao, Z. (2012). Research on coal seam floor water inrush monitoring based on perception of IoT coupled with GIS.
Newcomer, E. (2002). Understanding Web Services: XML, Wsdl, Soap, and UDDI: Addison-Wesley Professional.
OGC. (2013). Observation and measurements.
OGC. (2012).Sensor Observation Service Interface Standard.
OGC. (2014).SensorML: Model and XML Encoding Standard.
OGC. (2006).Sensor Alert Service Candidate Implementation Specification.
OGC. (2011).Sensor Planning Service Implementation Standard.
Protocol, C. A. (2010). v1. 2. OASIS Standard, 1.
Petak, W. J. (1985). Emergency management: A challenge for public administration. Public Administration Review, 45, 3-7.
Phillips, A. J., Newlands, N. K., Liang, S. H., & Ellert, B. H. (2014). Integrated sensing of soil moisture at the field-scale: Measuring, modeling and sharing for improved agricultural decision support. Computers and Electronics in Agriculture, 107, 73-88.
Poorazizi, M. E., Liang, S. H., & Hunter, A. J. (2012). Testing of sensor observation services: a performance evaluation. Paper presented at the Proceedings of the First ACM SIGSPATIAL Workshop on Sensor Web Enablement.
Roberts, C. M. (2006). Radio frequency identification (RFID). Computers & Security, 25(1), 18-26.
Robin, A., & Botts, M. E. (2006). Creation of Specific SensorML Process Models. Earth System Science Center-NSSTC, University of Alabama in Huntsville (UAH), HUNTSVILLE, AL, 35899.
Santos-Reyes, J., Alvarado-Corona, R., & Olmos-Peña, S. (2010). Learning from Tabasco’s floods by applying MORT. Safety science, 48(10), 1351-1360.
Seddigh, N., Nandy, B., & Lambadaris, J. (2006). An internet public alerting system: A canadian experience. Paper presented at the 3rd International Conference on Information Systems for Crisis Response and Management.
Sheth, A., Henson, C., & Sahoo, S. S. (2008). Semantic sensor web. Internet Computing, IEEE, 12(4), 78-83.
Sun, E., Zhang, X., & Li, Z. (2012). The internet of things (IOT) and cloud computing (CC) based tailings dam monitoring and pre-alarm system in mines. Safety science, 50(4), 811-815.
Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things (Vol. 20): EUR-OP.
Shin, S. C., Son, B. R., Kim, W. G., & Kim, J. G. (2008). ERFS: enhanced RSSI value filtering schema for localization in wireless sensor networks. InWireless Sensor and Actor Networks II (pp. 245-256). Springer US.
Tan, L., & Wang, N. (2010). Future internet: The internet of things. Paper presented at the Advanced Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on.
Verma, P., & Verma, D. C. (2005). Internet emergency alert system. Paper presented at the Military Communications Conference, 2005. MILCOM 2005. IEEE.
Wu, M., Lu, T.-l., Ling, F.-Y., Sun, L., & Du, H.-Y. (2010). Research on the architecture of Internet of things. Paper presented at the Advanced Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on.
Yang, L., Yang, S.-H., & Plotnick, L. (2013). How the internet of things technology enhances emergency response operations. Technological Forecasting and Social Change, 80(9), 1854-1867.
Yang, Z., Peng, Y., Yue, Y., Wang, X., Yang, Y., & Liu, W. (2011). Study and application on the architecture and key technologies for IOT. Paper presented at the Multimedia Technology (ICMT), 2011 International Conference on.
Yasuhara, K., Komine, H., Yokoki, H., Suzuki, T., Mimura, N., Tamura, M., & Chen, G. (2011). Effects of climate change on coastal disasters: new methodologies and recent results. Sustainability Science, 6(2), 219-232.
Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer networks, 52(12), 2292-2330.
Zhu, Q., Wang, R., Chen, Q., Liu, Y., & Qin, W. (2010). Iot gateway: Bridgingwireless sensor networks into internet of things. Paper presented at the Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International Conference on.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top