跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:粘家熒
研究生(外文):Chia-Ying Nien
論文名稱:應用於無線區域網路的0.7-V5-GHz互補式金氧半導體直接降頻式射頻前端接收器
論文名稱(外文):The Design of Sub-0.7V 5-GHz CMOS Direct-Conversion Receiver Front-End for Wireless LAN Applications
指導教授:吳重雨
指導教授(外文):Chung-Yu Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:86
中文關鍵詞:低電壓直接降頻射頻前端接收器直流偏差無線網路802.11a
外文關鍵詞:low voltagedirect-conversionRF receiver front-endDC offsetwireless local area network802.11a
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個操作電壓低於0.7伏特應用於無線區域網路的5-GHz低功率直接降頻式射頻前端接收器。此射頻接收器包含的電路有低雜訊放大器,可補償直流偏差的降頻器和正交壓控振盪器,透過國家晶片系統設計中心委託台灣積體電路製造股份有限公司以0.18微米互補式金氧半導體的製程製造。整個射頻接收器已經被完整地設計、製造與量測完成。
量測結果顯示,此射頻接收器可在低於0.7伏特的操作電壓下正常運作,但由於對寄生效應的疏忽,量測得到的效能不如預期。其中,射頻接收器的轉換增益為12.6 dB,雜訊指數為24 dB,1 dB增益壓縮點為-24 dBm,此外,當輸入一個頻率與正交壓控振盪器的頻率相同且強度為-50 dBm的訊號至接收器的輸入端時,自身混波後產生的直流偏差小於3毫伏。此射頻接收器的消耗功率為8.14毫瓦,晶片面積為4.4 mm2。經過分析因寄生效應而產生頻率偏移的問題之後,修正過的射頻接收器即可符合IEEE 802.11a的規格。
A sub-0.7V 5-GHz direct-conversion receiver for low-power and wireless applications is proposed in this thesis. The receiver composed of a low-noise amplifier, a set of I/Q downconverters with a DC compensation circuit, and a quadrature voltage-controlled oscillator is realized in a 0.18-�慆 CMOS technology supported by Taiwan Semiconductor Manufacturing Company via Chip Implementation Center. The proposed receiver is completely designed, fabricated and tested.
Measured results exhibit that the receiver can operate well under supply voltages of 0.65 V and 0.7 V even though it doesn’t achieve adequate performance due to an oversight of parasitic effects. The receiver performs a conversion gain of 12.6 dB, a noise figure of 24 dB, a 1-dB compression point of -24 dBm, and a DC offset of less than 3 mV with an injected input power of -50 dBm, while draining 8.14 mW and covering 4.4 mm2. The problem of frequency shift in measurement is discussed and modified, and a re-designed receiver, which is able to fit the IEEE 802.11a specification, is completed.
Chinese Abstract i
English Abstract ii
Acknowledgement iii
Contents iv
Table Captions vi
Figure Captions vii

CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 A Review of CMOS RF Receiver Front-End 2
1.2.1 Receiver Architectures 3
1.2.2 Issues in Direct-Downconversion 7
1.2.3 Low-Voltage Receivers 14
1.3 Motivation 14
1.4 Thesis Organization 15

CHAPTER 2 SUB-0.7V 5-GHz DIRECT-CONVERSION
RECEIVER FRONT-END 16
2.1 IEEE 802.11a PHY Specification and Link Budget 16
2.2 Downconverter with DC-Offset Compensation 20
2.2.1 Operational Principle 20
2.2.2 DC-Offset Compensation 24
2.2.3 Circuit Implementation 27
2.3 Folded-Cascode Low-Noise Amplifier 30
2.3.1 Design Considerations 31
2.3.2 Circuit Implementation 35
2.4 Quadrature Voltage-Controlled Oscillator 37
2.5 Receiver Realization 39
2.6 Simulation Results 42

CHAPTER 3 EXPERIMENTAL RESULTS 53
3.1 Layout Description 53
3.2 Measurement Considerations and Setup 54
3.3 Experimental Results 60
3.4 Discussions and Comparisons 69

CHAPTER 4 CONCLUSIONS AND FUTURE WORKS 80
4.1 Conclusions 80
4.2 Future Works 80

REFERENCES 82
[1] IEEE Std. 802.11a, Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band, Sep. 1999.
[2] B. Razavi, “Challenges in Portable RF Transceiver Design,” IEEE Mag. Circuit and Devices, vol. 12, pp. 12-25, Sep. 1996.
[3] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[4] C. B. Guo et al., “A Fully Integrated 900-Mhz CMOS Wireless Receiver with On-Chip RF and IF Filters and 79-dB Image Rejection,” IEEE J. Solid-State Circuits, vol. 37, pp. 1084-1089, Aug. 2002.
[5] J. C. Rudell et al., “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications,” IEEE J. Solid-State Circuits, vol. 32, pp. 2071-2088, Dec. 1997.
[6] A. A. Abidi, “Direct-Conversion Radio Transceivers for Digital Communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1399-1410, Dec. 1995.
[7] R. Hartley, “Modulation System,” U.S. Patent No.1666206, Apr. 1928.
[8] D. K. Weaver, “A Third Method of Generation and Detection of Single-Sideband Signals,” in Proc. IRE, vol. 44, Dec. 1956, pp. 1703-1705.
[9] A. Springer, L. Maurer, and R. Weigel, “RF System Concepts for Highly Integrated RFICs for W-CDMA Mobile Radio Terminals,” IEEE Trans. Microwave Theory and Techniques, vol. 50, pp. 254-267, Jan. 2002.
[10] B. Razavi, “A 2.4-GHz CMOS Receiver for IEEE 802.11 Wireless LAN’s,” IEEE J. Solid-State Circuits, vol. 34, pp. 1382-1385, Oct. 1999.
[11] A. R. Behzad et al., “A 5-GHz Direct-Conversion CMOS Transceiver Utilizing Automatic Frequency Control for the IEEE 802.11a Wireless LAN Standard,” IEEE J. Solid-State Circuits, vol. 38, pp. 2209-2220, Dec. 2003.
[12] B. Razavi, “A 5.2-GHz CMOS Receiver with 62-dB Image Rejection,” IEEE J. Solid-State Circuits, vol. 36, pp. 810-815, May 2001.
[13] R. Harjani, J. Kim, and J. Harvey, “DC-Coupled IF Stage Design for a 900-MHz ISM Receiver,” IEEE J. Solid-State Circuits, vol. 38, pp. 126-134, Jan. 2003.
[14] Y. J. Jung et al., “A Dual-Mode Direct-Conversion CMOS Transceiver for Bluetooth and 802.11b,” in Proc. 29th ESSCIRC, Sep. 16-18, 2003, pp. 225-228.
[15] Y. Ding, Design of Low Voltage 5-GHz CMOS Direct-Conversion Front-End Receiver, M. thesis, Coll. of Electrical Engineering and Computer Science, National Chiao-Tung University, Hsinchu, Taiwan, Jul. 2004.
[16] K. Y. Lee et al., “Full-CMOS 2-GHz WCDMA Direct Conversion Transmitter and Receiver,” IEEE J. Solid-State Circuits, vol. 38, pp. 43-53, Jan. 2003.
[17] T. Yamaji and H. Tanimoto, “A 2GHz Balanced Harmonic Mixer for Direct-Conversion Receivers,” in Proc. CICC, May 5-8, 1997, pp. 193-196.
[18] Z. Zhang, Z. Zhiheng, and J. Lau, “A 900 MHz CMOS Balanced Harmonic Mixer for Direct-Conversion Receivers,” in RAWCON 2000, Sep. 10-13, 2000, pp. 219-222.
[19] I. Vassiliou et al., “A Single-Chip Digitally Calibrated 5.15-5.825-GHz 0.18-μm CMOS Transceiver for 802.11a Wireless LAN,” IEEE J. Solid-State Circuits, vol. 38, pp. 2221-2231, Dec. 2003.
[20] P. Zhang et al., “A 5-GHz Direct-Conversion CMOS Transceiver,” IEEE J. Solid-State Circuits, vol. 38, pp. 2232-2238, Dec. 2003.
[21] M. Lehne, J. T. Stronick, and U. Moon, “An Adaptive Offset Cancellation Mixer for Direct Conversion Receivers in 2.4GHz CMOS,” in Proc. ISCAS, vol. 1, May 28-31, 2000, pp. 319-322.
[22] J. Stonick et al., “Adaptive DSP Compensation for Analog Distortions in 2.4 and 5.8 GHz Transceivers,” CDADIC Technical Report, Jul. 1999.
[23] B. Razavi, Design of Analog CMOS Integrated Circuits, Boston, MA: McGraw-Hill, 1999.
[24] B. Razavi, “Design Considerations for Direct-Conversion Receivers,” IEEE Trans. Circuits and Systems II, vol. 44, pp. 428-435, Jun. 1997.
[25] T. Melly et al., “A 1.3V Low-Power 430 MHz Front-End Using a Standard Digital CMOS Process,” in Proc. CICC, May 11-14, 1998, pp. 503-506.
[26] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd Ed., Boston, MA: McGraw-Hill, 1999.
[27] B. Ravazi, “A 900-MHz CMOS Direct Conversion Receiver,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 12-14, 1997, pp. 113-114.
[28] S. Zhou and M. C. Chang, “A CMOS Passive Mixer with Low Flicker Noise for Low-Power Direct-Conversion Receiver,” IEEE J. Solid-State Circuits, vol. 40, pp. 1084-1093, May 2005.
[29] M. Zargari, “A 5-GHz CMOS Transceiver for IEEE 802.11a Wireless LAN Systems,” IEEE J. Solid-State Circuits, vol. 37, pp. 1688-1693, Dec. 2002.
[30] C. H. Park, O. Kim, and B. Kim, “A 1.8-GHz Self-Calibrated Phase-Locked Loop with Precise I/Q Matching.” IEEE J. Solid-State Circuits, vol. 36, pp.777-783, May 2001.
[31] S. H. Wang et al., “A 5-GHz Band I/Q Clock Generator Using a Self-Calibration Technique,” in Proc. 28th ESSCIRC, Sep. 24-26, 2002, pp. 807-810.
[32] A. Parssinen, “A 2-GHz Wide-Band Direct Conversion Receiver for WCDMA Applications,” IEEE J. Solid-State Circuits, vol. 34, pp. 1893-1903, Dec. 1999.
[33] M. N. El-Gamal, K. H. Lee, and T. K. Tsang, “Very low-voltage (0.8 V) CMOS receiver frontend for 5 GHz RF applications,” in Proc. IEE Circuits Devices Syst., vol. 149, Oct.-Dec. 2002, pp. 355-362.
[34] C. H. Chang, The Design of High-Output-Power RF Power Amplifier Using MOS Devices with Positive Substrate Bias, M. thesis, Coll. of Electrical Engineering and Computer Science, National Chiao-Tung University, Hsinchu, Taiwan, Jul. 2004.
[35] H. T. Friis, “Noise Figure of Radio Receivers,” in Proc. IRE, vol. 32, Jul. 1944, pp. 419-422.
[36] H. S. Kao and C. Y. Wu, “An Improved Low-Power CMOS Direct-Conversion Transmitter for GHz Wireless Communication Applications,” in APCCAS 2002, vol. 1, Oct. 28-31, 2002, pp. 5-8.
[37] S. Y. Hsiao and C. Y. Wu, “A Parallel Structure for CMOS Four-Quadrant Analog Multipliers and Its Application to a 2-GHz RF Downconversion Mixer,” IEEE J. Solid-State Circuits, vol. 33, pp. 859-869, Jun. 1998.
[38] C. Y. Wu and H. S. Kao, “A 2-V Low-Power CMOS Direct-Conversion Quadrature Modulator with Integrated Quadrature Voltage-Controlled Oscillator and RF Amplifier for GHz RF Transmitter Applications,” IEEE Trans. Circuits and Systems II, vol. 49, pp. 123-134, Feb. 2002.
[39] C. Y. Wu and C. Y. Chou, “A 5-GHz CMOS Double-Quadrature Receiver for IEEE 802.11a Applications,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 12-14, 2003, pp. 149-152.
[40] A. V. Ziel, “Gate Noise in Field Effect Transistors at Moderately High Frequencies,” in Proc. IEEE, vol. 51, pp. 461-467, Mar. 1963.
[41] D. K. Shaeffer and T. H. Lee, The Design and Implementation of Low-Power CMOS Radio Receivers, Norwell, MA: Kluwer Academic, 1999.
[42] N. G. Einspruch, Ed., VLSI Electronics: Microstructure Science, vol. 18, chap. 1, pp. 1-37, Academic Press, NY, 1989.
[43] E. Abou-Allam and T. Manku, “A Low Voltage Design Technique for Low Noise RF Integrated Circuits,” in Proc. ISCAS, vol. 4, May 31-Jun. 3, 1998, pp. 373-377.
[44] H. Samavati, H. R. Rategh, and T. H. Lee, “A 5-GHz CMOS Wireless LAN Receiver Front End,” IEEE J. Solid-State Circuits, vol. 35, pp. 765-772, May 2000.
[45] C. Y. Wu and H. S. Kao, “A 1.8 GHz CMOS Quadrature Voltage-Controlled Oscillator (VCO) Using the Constant-Current LC Ring Oscillator Structure,” in Proc. ISCAS, vol. 4, May 31-Jun. 3, 1998, pp. 378-381.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top