跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/25 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊景智
論文名稱:使用高階統計徑向基底類神經網路於腸鳴音信號強化
論文名稱(外文):Higher-order-statistics-based radial basis function networks for bowel sound signal enhancement
指導教授:林伯昰
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:37
中文關鍵詞:高斯雜訊高階統計徑向基底類神經網路腸音
外文關鍵詞:Gaussian noiseHigher order statisticsRadial basis function networkBowel sounds
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
胃腸道疾病常見的診斷方式是以非侵入式的腸音聽診作為診斷的依據,但腸音的發生沒有規律性且振幅不明顯,因此容易受到背景環境的干擾,提高診斷困難度及降低準確性。此外,腸音的頻帶範圍也容易與背景環境雜訊重疊,導致數位濾波器無法達到良好的腸音信號強化。本論文提出使用高階統計徑向基底類神經網路來達到腸鳴音信號強化的功能,高階統計具有抑制高斯雜訊及對稱分布之非高斯雜訊的特性,能有效保留具有非高斯且非對稱分佈特性的腸鳴音,將高斯雜訊及對稱分布之非高斯雜訊抑制,達到腸鳴音信號強化的目的。本論文的模擬與實驗結果顯示,高階統計徑向基底類神經網路可在穩態與非穩態的高斯雜訊中有效強化受干擾的腸音,因此高階統計徑向基底類神經網路可作為強化腸鳴音的有效技術。
The auscultation of bowel sounds provides a non-invasive method to diagnosis gastrointestinal motility diseases. However, bowel sounds can be easily contaminated by background noises, and the frequency band of bowel sounds is easily overlapped with background noise. Therefore, it is difficult to enhance the noisy bowel sounds by using precise digital filters. In this study, higher-order-statistics (HOS)-based radial basis function (RBF) network was proposed to enhance noisy bowel sounds. Higher order statistics technique provides the ability to suppress Gaussian noises and symmetrically distributed non-Gaussian noises due to their natural tolerance. Therefore, the influence of additional noises on the HOS-based learning algorithm can be reduced effectively. The simulated and experimental results show that HOS-based RBF can exactly provide better performance for enhancing bowel sounds under stationary and non-stationary Gaussian noises. Therefore, HOS-based RBF can be considered as a good approach for enhancing noisy bowel sounds.
摘 要 i
Abstract ii
誌 謝 iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Previous research 1
1.3 Motivation 3
1.4 Organization of thesis 4
Chapter 2 Literature Review 5
2.1 Adaptive linear filter with least-mean-square algorithm 5
2.2 Multilayer perceptron filter 6
2.3 Radial basis function network filter 6
Chapter 3 Methodology 8
3.1 Radial basis function network for signal enhancement 8
3.2 Higher order statistics-based radial basis function network for signal enhancement 10
Chapter 4 Results and Discussions 15
4.1 Performance comparison for stationary Gaussian noise 15
4.2 Performance comparison for non-stationary Gaussian noise 21
4.3 Performance comparison for environment noise 24
4.4 Performance comparison for clinically noisy bowel sounds 28
Chapter 5 Conclusions 33
[1] B. L. Craine, M. L. Silpa, and C. J. O'Toole, "Two-dimensional positional mapping of gastrointestinal sounds in control and functional bowel syndrome patients," Digestive Diseases and Sciences, vol. 47, pp. 1290-1296, 2002.
[2] H. A. Mansy and R. H. Sandler, "Bowel sound signal enhancement using adaptive filtering - separating heart sounds from gastrointestinal acoustic phenomena," IEEE Engineering in Medicine and Biology Magazine, vol. 16, pp. 105-117, 1997.
[3] R. P. Lippmann and P. Beckman, "Adaptive neural net preprocessing for signal detection in non-Gaussian noise," Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, vol. 1, pp. 124-132, 1989.
[4] J. W. Watterson, "An optimum multilayer perceptron neural receiver for signal detection," IEEE Transactions on Neural Networks, vol. 1, pp. 298-300, 1990.
[5] S. A. Billings and C. F. Fung, "Recurrent radial basis function networks for adaptive noise cancellation," Neural Networks, vol. 8, pp. 273-290, 1995.
[6] I. Cha and S. A. Kassam, "Interference cancellation using radial basis function networks," Signal Processing, vol. 47, pp. 247-268, 1995.
[7] Z. Michalopoulou, L. Nolte, and D. Alexandrou, "Performance evaluation of multilayer perceptrons in signal detection and classification," IEEE Transactions on Neural Networks, vol. 6, pp. 381-386, 1995.
[8] P. P. Gandhi and V. Ramamurti, "Neural networks for signal detection in non-Gaussian noise," IEEE Transactions on Signal Processing, vol. 45, pp. 2846-2851, 1997.
[9] D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Systems, vol. 2, pp. 321-355, 1988.
[10] J. Park and I. W. Sandberg, "Universal approximation using radial basis function networks," Neural Computation, vol. 3, pp. 246-257, 1991.
[11] J. Park and I. W. Sandberg, "Approximation and radial basis function networks," Neural Computation, vol. 5, pp. 305-316, 1993.
[12] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. New York: Plenum, 1981.
[13] S. Chen, B. Mulgrew, and P. M. Grant, "A clustering technique for digital communications channel equalization using radial basis function networks," IEEE Transactions on Neural Networks, vol. 4, pp. 570-578, 1993.
[14] M. Brown and C. Harris, Neurofuzzy adaptive modelling and control. Englegood Cliffs, NJ: Prentice-Hall, 1994.
[15] T. Poggio and F. Girosi, "Regularization algorithms for learning that are equivalent to multilayer networks," Science, vol. 247, pp. 978-982, 1990.
[16] J. E. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing units," Neural Computation, vol. 1, pp. 281-294, 1989.
[17] B. M. Sadler, G. B. Giannakis, and K.-S. Li, "Estimation and detection in non-Gaussian noise using higher order statistics," IEEE Transactions on Signal Processing, vol. 42, pp. 2729-2741, 1994.
[18] S. Mo and B. Shafai, "Blind equalization using higher order cumulants and neural network," IEEE Transactions on Signal Processing, vol. 42, pp. 3209-3217, 1994.
[19] L. J. Hadjileontiadis and S. M. Panas, "Adaptive reduction of heart sounds from lung sounds using fourth-order statistics," IEEE Transactions on Biomedical Engineering, vol. 44, pp. 642-648, 1997.
[20] H. M. Ibrahim, R. R. Gharieb, and M. M. Hassan, "A higher-order statistics-based adaptive algorithm for line enhancement," IEEE Transactions on Signal Processing, vol. 47, pp. 527-532, 1999.
[21] A. N. Rajagopalan, "Image clustering using higher-order statistics," Electronics Letters, vol. 38, pp. 122-124, 2002.
[22] J.-S. Lee, J.-H. Kim, D.-K. Jee, J.-J. Hwang, and J.-H. Lee, "Blind equalization using RBF and HOS," Intelligent Data Engineering and Automated Learning, vol. 2690, pp. 442-446, 2003.
[23] K. Li, M. N. S. Swamy, and M. O. Ahmad, "An improved voice activity detection using higher order statistics," IEEE Transactions on Speech and Audio Processing, vol. 13, pp. 965-974, 2005.
[24] B. S. Lin, B. S. Lin, F. C. Chong, and F. P. Lai, "A functional link network with higher order statistics for signal enhancement," IEEE Transactions on Signal Processing, vol. 54, pp. 4821-4826, 2006.
[25] M. E. Hassouni, H. Cherifi, and D. Aboutajdine, "HOS-based image sequence noise removal," IEEE Transactions on Image Processing, vol. 15, pp. 572-581, 2006.
[26] B. S. Lin, B. S. Lin, F. C. Chong, and F. P. Lai, "Higher-order-statistics-based radial basis function networks for signal enhancement," IEEE Transactions on Neural Networks, vol. 18, pp. 823-832, 2007.
[27] B. S. Lin, B. S. Lin, F. C. Chong, and F. P. Lai, "Higher order statistics-based radial basis function network for evoked potentials," IEEE Transactions on Biomedical Engineering, vol. 56, pp. 93-100, 2009.
[28] C. L. Nikias and A. P. Petropulu, Higher-order spectra analysis: a nonlinear signal processing framework. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[29] C. L. Nikias and J. M. Mendel, "Signal processing with higher-order spectra," IEEE Signal Processing Magazine, vol. 10, pp. 10-37, 1993.
[30] S. Gazor and Z. Wei, "Speech probability distribution," IEEE Signal Processing Letters, vol. 10, pp. 204-207, 2003.
[31] L. R. Rabiner and R. W. Schafer, Digital processing of speech signals. Englewood Cliffs, NJ: Prentice-Hall, 1978.
[32] T. Barry, Handbook for acoustic ecology. Burnaby, BC: Cambridge Street Publishing Company, 1978.
[33] I. T. Rekanos and L. J. Hadjileontiadis, "An iterative kurtosis-based technique for the detection of nonstationary bioacoustic signals," Signal Processing, vol. 86, pp. 3787-3795, 2006.
[34] B. Widrow, J. R. Glover, Jr., J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, Jr., and R. C. Goodlin, "Adaptive noise cancelling: principles and applications," Proceedings of the IEEE, vol. 63, pp. 1692-1716, 1975.
[35] V. K. Iyer, P. A. Ramamoorthy, H. Fan, and Y. Ploysongsang, "Reduction of heart sounds from lung sounds by adaptive filterng," IEEE Transactions on Biomedical Engineering, vol. 33, pp. 1141-1148, 1986.
[36] H. Ritter, T. Martinetz, K. Schulten, D. Barsky, M. Tesch, and R. Kates, Neural computation and self-organizing maps. Reading, MA: Addison Wesley Publishing Company, 1992.
[37] S. Chen, S. A. Billings, and P. M. Grant, "A recursive hybrid algorithm for nonlinear system identification using radial basis function networks," International Journal of Control, vol. 55, pp. 1051-1070, 1992.
[38] S. Haykin, Adaptive Filter Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[39] J. R. Zeidler, "Performance analysis of LMS adaptive prediction filters," Proceedings of the IEEE, vol. 78, pp. 1781-1806, 1990.
[40] Sound Ideas, (2001), XV Sound Effects Series. [Online]. Available: http://www.sound-ideas.com/xv.html.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top