|
[1] Abraham, K. M.; Jiang, Z. "A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery" Journal of The Electrochemical Society; 1996; 143; 1. [2] Zhang, T.; Imanishi, N.; Shimonishi, Y.; Hirano, A.; Xie, J.; Takeda, Y. "Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions" Journal of The Electrochemical Society; 2010; 157; A214. [3] Girishkumar, G.; McCloskey. B.; Luntz, A. C.; Swanson, S.; Wilcke, W. " Lithium−Air Battery: Promise and Challenges" The Journal of Physical Chemistry Letters; 2010; 1; 2193. [4] Littauer, E. L.; Tsai, K. C. "Anodic Behavior of Lithium in Aqueous Electrolytes: I . Transient Passivation" Journal of The Electrochemical Society; 1976; 123; 771. [5] Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. " Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery" The Journal of Physical Chemistry C; 2010; 114; 9178. [6] Wang, Y.; Zhou, H. "A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy" Journal of Power Sources; 2010; 195; 358. [7] Li, F.; Kitaura, H.; Zhou, H. "The pursuit of rechargeable solid-state Li-air batteries" Energy & Environmental Science; 2013; 6; 2302. [8] Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. "Li-O2 and Li-S batteries with high energy storage" Nat Mater; 2012; 11; 19. [9] Christensen, J.; Albertus. P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R. "A Critical Review of Li/Air Batteries" Journal of The Electrochemical Society; 2011; 159; R1. [10] Garcia-Araez, N.; Novák, P. "Critical aspects in the development of lithium–air batteries" Journal of Solid State Electrochemistry; 2013; 17; 1793. [11] Gogotsi, Y.; Simon, P. "True Performance Metrics in Electrochemical Energy Storage" Science; 2011; 334; 917. [12] Lu, Y. C.; Gasteiger, H. A.; Shao-Horn, Y. "Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries" Journal of the American Chemical Society; 2011; 133; 19048. [13] McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar G, Luntz, A. C. "Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry" The Journal of Physical Chemistry Letters; 2011; 2; 1161. [14] Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.; Nørskov, J. K.; Girishkumar, G.; McCloskey, B. D. "Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries" The Journal of Chemical Physics; 2011; 135; 214704. [15] Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. "Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes" Electrochemistry; 2010; 78; 403. [16] Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. "The Lithium–Oxygen Battery with Ether-Based Electrolytes" Angewandte Chemie International Edition; 2011; 50; 8609. [17] Xu, W.; Xiao, J.; Zhang, J.; Wang, D.; Zhang, J. G. "Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment" Journal of The Electrochemical Society; 2009; 156; A773. [18] Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. "Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications" The Journal of Physical Chemistry C; 2009; 113; 20127. [19] Mizuno, F.; Nakanishi, S.; Shirasawa, A.; Takechi, K.; Shiga, T.; Nishikoori, H.; "Design of Non-aqueous Liquid Electrolytes for Rechargeable Li-O2 Batteries" Electrochemistry; 2011; 79; 876. [20] Allen, C. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. "Oxygen Electrode Rechargeability in an Ionic Liquid for the Li–Air Battery" The Journal of Physical Chemistry Letters; 2011; 2; 2420 [21] De Giorgio, F.; Soavi. F.; Mastragostino, M. "Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes" Electrochemistry Communications; 2011; 13; 1090. [22] Zhang, Z.; Lu, J.; Assary, R. S.; Du, P.; Wang, H. H.; Sun, Y. K.; "Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes" The Journal of Physical Chemistry C; 2011; 115; 25535. [23] Hyoung Oh, S.; Yim, T.; Ekaterina, P.; Nazar, L. F.; "Decomposition Reaction of Lithium Bis(oxalato)borate in the Rechargeable Lithium-Oxygen Cell" Electrochemical and Solid-State Letters; 2011; 14; A185. [24] Nasybulin, E.; Xu, W.; Engelhard, M. H.; Nie, Z.; Burton, S. D.; Cosimbescu, L.; "Effects of Electrolyte Salts on the Performance of Li–O2 Batteries" The Journal of Physical Chemistry C; 2013; 117; 2635. [25] Lee, D. J.; Lee, H.; Song, J.; Ryou, M. H.; Lee, Y. M.; Kim, H. T. "Composite protective layer for Li metal anode in high-performance lithium–oxygen batteries" Electrochemistry Communications; 2014; 40; 45. [26] Crowther, O.; Meyer, B.; Morgan, M.; Salomon, M. "Primary Li-air cell development" Journal of Power Sources; 2011; 196; 1498. [27] Zhang, J.; Xu, W.; Li, X.; Liu, W. "Air Dehydration Membranes for Nonaqueous Lithium–Air Batteries" Journal of The Electrochemical Society; 2010; 157; A940. [28] He, P.; Wang, Y.; Zhou, H. "A Li-air fuel cell with recycle aqueous electrolyte for improved stability" Electrochemistry Communications; 2010; 12; 1686. [29] Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P. "MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries" Journal of Power Sources; 2016; 306; 724. [30] Shen, C.; Wen, Z.; Wang, F.; Wu, T.; Wu, X. "Cobalt-Metal-Based Cathode for Lithium–Oxygen Battery with Improved Electrochemical Performance" ACS Catalysis; 2016; 6; 4149. [31] Ryu, W. H.; Gittleson, F. S.; Schwab, M.; Goh, T.; Taylor, A. D. "A Mesoporous Catalytic Membrane Architecture for Lithium–Oxygen Battery Systems" Nano Letters; 2015; 15; 434. [32] Huang, Y. g.; Chen, J.; Zhang, X. h.; Zan, Y. h.; Wu, X-m. He, Z-q. " Three-dimensional Co3O4/CNTs/CFP composite as binder-free cathode for rechargeable Li-O2 batteries" Chemical Engineering Journal; 2016; 296; 28. [33] Riaz, A.; Jung, K. N. Chang, W.; Shin, K. H.; Lee, J. W. "Carbon-, Binder-, and Precious Metal-Free Cathodes for Non-Aqueous Lithium–Oxygen Batteries: Nanoflake-Decorated Nanoneedle Oxide Arrays" ACS Applied Materials & Interfaces; 2014; 6; 17815. [34] Liu, Q. C.; Xu, J. J.; Xu, D.; Zhang, X-B. "Flexible lithium-oxygen battery based on a recoverable cathode" Nat Commun; 2015; 6. [35] Luo, W. B.; Chou,S. L.; Wang, J. Z.; Zhai, Y. C.; Liu, H. K. "A Metal-Free, Free-Standing, Macroporous Graphene@g-C3N4Composite Air Electrode for High-Energy Lithium Oxygen Batteries" Small; 2015; 11; 2817. [36] Luo, Y.; Lu, F.; Jin, C.; Wang. Y, Yang, R.; Yang, C. "NiCo2O4@La0.8Sr0.2MnO3 core–shell structured nanorods as efficient electrocatalyst for LiO2 battery with enhanced performances" Journal of Power Sources; 2016; 319; 19. [37] Zhang, P.; Wang, R.; He, M.; Lang, J.; Xu, S.; Yan, X "3D Hierarchical Co/CoO-Graphene-Carbonized Melamine Foam as a Superior Cathode toward Long-Life Lithium Oxygen Batteries" Advanced Functional Materials. 2016; 26; 1354. [38] Wang, Z.; You, Y.; Yuan, J.; Yin, Y. X.; Li, Y-T.; Xin, S. "Nickel-Doped La0.8Sr0.2Mn1–xNixO3 Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithium–Air Batteries" ACS Applied Materials & Interfaces; 2016; 8; 6520. [39] Mei, D.; Yuan, X.; Ma, Z.; Wei, P.; Yu, X.; Yang, J. "A SnO2-Based Cathode Catalyst for Lithium-Air Batteries" ACS Applied Materials & Interfaces; 2016; 8; 12804. [40] Zhang, S. S.; Foster, D.; Read, J. "Discharge characteristic of a non-aqueous electrolyte Li/O2 battery" J Power Sources; 2010; 195. [41] Yang, X-h.; He, P.; Xia, Y-y. "Preparation of mesocellular carbon foam and its application for lithium/oxygen battery" Electrochemistry Communications; 2009; 11; 1127. [42] Li, Y.; Wang, J.; Li, X.; Geng, D.; Li, R.; Sun, X. "Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery" Chemical Communications; 2011; 47; 9438. [43] Li, Y.; Wang, J.; Li, X.; Liu, J.; Geng, D.; Yang, J. "Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries" Electrochemistry Communications; 2011; 13; 668. [44] Lu, Y-C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. "The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries" Electrochemical and Solid-State Letters; 2010; 13; A69. [45] Débart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. "a-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries" Angew Chem; 2008; 47. [46] Débart, A,.; Bao, J.; Armstrong, G.; Bruce, P. G. "An O2 cathode for rechargeable lithium batteries: The effect of a catalyst" Journal of Power Sources; 2007; 174; 1177. [47] Kim, K. S.; Park, Y. J.; "Catalytic properties of Co3O4nanoparticles for rechargeable Li/air batteries" Nanoscale Research Letters; 2012; 7; 47. [48] Zhou, Y-X.; Yao, H-B.; Wang, Y.; Liu, H-L.; Gao, M-R.; Shen, P-K." Hierarchical Hollow Co9S8 Microspheres: Solvothermal Synthesis, Magnetic, Electrochemical, and Electrocatalytic Properties" Chemistry – A European Journal; 2010; 16; 12000. [49] Gao, M-R.; Liu, S.; Jiang, J.; Cui, C-H.; Yao, W-T.; Yu, S-H. "In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance" Journal of Materials Chemistry; 2010; 20; 9355. [50] Dong, S.; Wang, S.; Guan, J.; Li, S.; Lan, Z.; Chen, C. "Insight into Enhanced Cycling Performance of Li–O2 Batteries Based on Binary CoSe2/CoO Nanocomposite Electrodes" The Journal of Physical Chemistry Letters; 2014; 5; 615. [51] Cindrella, L.; Kannan,A. M.; Lin, J. F.; Saminathan, K.; Ho, Y.; Lin, C. W. "Gas diffusion layer for proton exchange membrane fuel cells—A review" Journal of Power Sources; 2009; 194;146.
|