跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡耀中
研究生(外文):yao chong Hu
論文名稱:二硒化鈷/氮化碳複合材料應用於 鋰氧電池之陰極材料
論文名稱(外文):Cobalt Diselenide / Graphitic Carbon Nitride Composite Material as Cathode Catalyst for Lithium – O2 Batteries
指導教授:吳明川吳明川引用關係張合
口試委員:劉如熹張文昇魏大華
口試日期:2016-05-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:二硒化鈷、氮化碳、鋰空氣電池、DMSO
外文關鍵詞:CoSe2、C3N4、鋰空氣電池、DMSO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨世界經濟發展,生活品質不斷地改善,人們享受科技所帶來之便捷同時,亦不得不面對能源短缺與環境汙染之問題。目前世界各國仍以石油作為主要能源,導致近年石油供不應求,原油價格持續飆升,且使用石油燃料過程中持續排放二氧化碳等有害氣體汙染地球,故發展高能量密度之 二次電池減緩環境壓力乃科技產業發展必然方向。
本研究主要為配製棒狀結構之硒化鈷複合材料,並應用於鋰氧電池之陰極觸媒。利用水熱法技術可獲得產物。利用粉末X光繞射儀(X-ray diffraction; XRD)鑑定樣品之晶相與其結晶度,以掃描式電子顯微鏡(scanning electron microscope; SEM)與穿透式電子顯微鏡(Transmission Electron Microscopy;TEM)觀測樣品表面形貌,並以X光電子能譜(X-ray photoelectron spectroscopy; XPS)分別量測樣品表面與整體之配位環境。經電化學鑑定發現含量50mg氮化碳之硒化鈷可得最低之充放電過電位與2150.mAh• gc-1之高電容量。且由電化學阻抗可得知複合氮化碳之硒化鈷材料可得較低之阻抗,此將有利於電極表面氧化還原,且於充放電時過電位降低且充電電容量明顯提升。
In the recent years, with the continuous development of economic globalization, the quality of our living have gone from good to well, when people enjoy the convenience technology, I also need to face the problem of energy shortage and environmental pollution. So far oil as a major energy source in the world, resulting in crude oil prices continue to rise in recent years. Fossil fuels easy to produce emissions of carbon dioxide and other harmful gases, so the development of high energy density secondary battery that reduce environmental pressure is the development of technology the main direction.
The study synthesized rod-like structure of different cobalt selenide compound material (CoSe2@g-C3N4) by simple hydrothermal method for cathode of lithium-air battery. The study explored what is the influence as catalytic process if CoSe2 grafted in g-C3N4. I identified the phase and crystallinity by X-ray diffraction (XRD), observed the morphology by scanning electron microscope(SEM), observed material structure by transmission electron microscopes (TEM). X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) were used to observe the oxidation states and the coordination conditions.I found the surface of CoSe2 existed highest ratio of Co2+. Identified by the electrochemical method, CoSe2 grafted in 50mg g-C3N4 can get low over potential and high capacity(2158 mAh•g-1). The conductivity of cathode material was calculated by performing the electrochemical impedance spectroscopy (EIS). I found that CoSe2 grafted in g-C3N4 can get lower impedance. Electrode surface will be easy for oxidation and reduction.
目錄
摘要 I
目錄 II
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1鋰電池定義與分類 2
1.1.1 鋰電池定義 2
1.1.2 鋰電池分類 2
1.1.3 鋰離子電池缺點 2
1.2鋰空氣電池簡介 3
1.2.1鋰空氣電池種類與其工作原理 4
1.3鋰空氣電池研究現況 9
1.3.1 有機電解液 9
1.3.2 鋰鹽 12
1.3.3 其他研究 12
1.3.4 陰極觸媒發展 13
1.3.4.1 碳類催化劑 14
1.3.4.2 貴金屬催化劑 15
1.3.4.3 過渡金屬氧族化合物催化劑 17
1.3.4.4 過渡金屬硫族化合物催化劑 19
1.4 鋰空氣電池優缺點與所面臨之問題 21
1.5 研究動機與目的 24
第二章 實驗步驟與儀器分析原理 25
2.1 化學藥品 25
2.2金屬硒化物之配製 25
2.3 觸媒漿料與電極之配製 27
2.3.1 鋰空氣電池之電極 27
2.4 電化學測試之組裝與系統 27
2.4.1 鈕扣電池(Coin cell)之組裝 27
2.4.2 鋰空氣電池之組裝與系統 28
2.5 觸媒樣品之鑑定與分析 30
2.5.1 X光繞射儀(X-ray diffraction; XRD) 31
2.5.2 結構精算(General Structure Analysis System; GSAS) 32
2.5.3掃描式電子顯微鏡(Scanning Electron Microscope; SEM ) 32
2.5.4能量散射光譜儀(Energy Dispersive Spectrometer; EDS) 33
2.5.5穿透式電子顯微鏡(Transmission Electron Microscopy; TEM) 33
2.5.6 高解像能穿透式電子顯微鏡(High-resolution Transmission Electron Microscopy; HRTEM) 34
2.5.7拉曼光譜(Raman) 34
2.5.8 X射線光電子能譜儀(X-ray Photoelectron Pectroscopy; XPS ) 35
2.5.9 X光吸收光譜(X-ray Absorption Spectroscopy; XAS ) 36
2.5.10 循環伏安法(Cyclic voltammetry; CV) 37
2.5.11電化學交流阻抗法(electrochemcal impedance spectrum; EIS) 38
2.5.12充放電測試儀 39
第三章 結果與討論 41
3.1不同金屬鈷化物之結構鑑定 41
3.2硒化物之電性分析 50
第四章 結論 57
參考資料 58
[1] Abraham, K. M.; Jiang, Z. "A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery" Journal of The Electrochemical Society; 1996; 143; 1.
[2] Zhang, T.; Imanishi, N.; Shimonishi, Y.; Hirano, A.; Xie, J.; Takeda, Y. "Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions" Journal of The Electrochemical Society; 2010; 157; A214.
[3] Girishkumar, G.; McCloskey. B.; Luntz, A. C.; Swanson, S.; Wilcke, W. " Lithium−Air Battery: Promise and Challenges" The Journal of Physical Chemistry Letters; 2010; 1; 2193.
[4] Littauer, E. L.; Tsai, K. C. "Anodic Behavior of Lithium in Aqueous Electrolytes: I . Transient Passivation" Journal of The Electrochemical Society; 1976; 123; 771.
[5] Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. " Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery" The Journal of Physical Chemistry C; 2010; 114; 9178.
[6] Wang, Y.; Zhou, H. "A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy" Journal of Power Sources; 2010; 195; 358.
[7] Li, F.; Kitaura, H.; Zhou, H. "The pursuit of rechargeable solid-state Li-air batteries" Energy & Environmental Science; 2013; 6; 2302.
[8] Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. "Li-O2 and Li-S batteries with high energy storage" Nat Mater; 2012; 11; 19.
[9] Christensen, J.; Albertus. P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R. "A Critical Review of Li/Air Batteries" Journal of The Electrochemical Society; 2011; 159; R1.
[10] Garcia-Araez, N.; Novák, P. "Critical aspects in the development of lithium–air batteries" Journal of Solid State Electrochemistry; 2013; 17; 1793.
[11] Gogotsi, Y.; Simon, P. "True Performance Metrics in Electrochemical Energy Storage" Science; 2011; 334; 917.
[12] Lu, Y. C.; Gasteiger, H. A.; Shao-Horn, Y. "Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries" Journal of the American Chemical Society; 2011; 133; 19048.
[13] McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar G, Luntz, A. C. "Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry" The Journal of Physical Chemistry Letters; 2011; 2; 1161.
[14] Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.; Nørskov, J. K.; Girishkumar, G.; McCloskey, B. D. "Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries" The Journal of Chemical Physics; 2011; 135; 214704.
[15] Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. "Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes" Electrochemistry; 2010; 78; 403.
[16] Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. "The Lithium–Oxygen Battery with Ether-Based Electrolytes" Angewandte Chemie International Edition; 2011; 50; 8609.
[17] Xu, W.; Xiao, J.; Zhang, J.; Wang, D.; Zhang, J. G. "Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment" Journal of The Electrochemical Society; 2009; 156; A773.
[18] Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. "Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications" The Journal of Physical Chemistry C; 2009; 113; 20127.
[19] Mizuno, F.; Nakanishi, S.; Shirasawa, A.; Takechi, K.; Shiga, T.; Nishikoori, H.; "Design of Non-aqueous Liquid Electrolytes for Rechargeable Li-O2 Batteries" Electrochemistry; 2011; 79; 876.
[20] Allen, C. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. "Oxygen Electrode Rechargeability in an Ionic Liquid for the Li–Air Battery" The Journal of Physical Chemistry Letters; 2011; 2; 2420
[21] De Giorgio, F.; Soavi. F.; Mastragostino, M. "Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes" Electrochemistry Communications; 2011; 13; 1090.
[22] Zhang, Z.; Lu, J.; Assary, R. S.; Du, P.; Wang, H. H.; Sun, Y. K.; "Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes" The Journal of Physical Chemistry C; 2011; 115; 25535.
[23] Hyoung Oh, S.; Yim, T.; Ekaterina, P.; Nazar, L. F.; "Decomposition Reaction of Lithium Bis(oxalato)borate in the Rechargeable Lithium-Oxygen Cell" Electrochemical and Solid-State Letters; 2011; 14; A185.
[24] Nasybulin, E.; Xu, W.; Engelhard, M. H.; Nie, Z.; Burton, S. D.; Cosimbescu, L.; "Effects of Electrolyte Salts on the Performance of Li–O2 Batteries" The Journal of Physical Chemistry C; 2013; 117; 2635.
[25] Lee, D. J.; Lee, H.; Song, J.; Ryou, M. H.; Lee, Y. M.; Kim, H. T. "Composite protective layer for Li metal anode in high-performance lithium–oxygen batteries" Electrochemistry Communications; 2014; 40; 45.
[26] Crowther, O.; Meyer, B.; Morgan, M.; Salomon, M. "Primary Li-air cell development" Journal of Power Sources; 2011; 196; 1498.
[27] Zhang, J.; Xu, W.; Li, X.; Liu, W. "Air Dehydration Membranes for Nonaqueous Lithium–Air Batteries" Journal of The Electrochemical Society; 2010; 157; A940.
[28] He, P.; Wang, Y.; Zhou, H. "A Li-air fuel cell with recycle aqueous electrolyte for improved stability" Electrochemistry Communications; 2010; 12; 1686.
[29] Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P. "MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries" Journal of Power Sources; 2016; 306; 724.
[30] Shen, C.; Wen, Z.; Wang, F.; Wu, T.; Wu, X. "Cobalt-Metal-Based Cathode for Lithium–Oxygen Battery with Improved Electrochemical Performance" ACS Catalysis; 2016; 6; 4149.
[31] Ryu, W. H.; Gittleson, F. S.; Schwab, M.; Goh, T.; Taylor, A. D. "A Mesoporous Catalytic Membrane Architecture for Lithium–Oxygen Battery Systems" Nano Letters; 2015; 15; 434.
[32] Huang, Y. g.; Chen, J.; Zhang, X. h.; Zan, Y. h.; Wu, X-m. He, Z-q. " Three-dimensional Co3O4/CNTs/CFP composite as binder-free cathode for rechargeable Li-O2 batteries" Chemical Engineering Journal; 2016; 296; 28.
[33] Riaz, A.; Jung, K. N. Chang, W.; Shin, K. H.; Lee, J. W. "Carbon-, Binder-, and Precious Metal-Free Cathodes for Non-Aqueous Lithium–Oxygen Batteries: Nanoflake-Decorated Nanoneedle Oxide Arrays" ACS Applied Materials & Interfaces; 2014; 6; 17815.
[34] Liu, Q. C.; Xu, J. J.; Xu, D.; Zhang, X-B. "Flexible lithium-oxygen battery based on a recoverable cathode" Nat Commun; 2015; 6.
[35] Luo, W. B.; Chou,S. L.; Wang, J. Z.; Zhai, Y. C.; Liu, H. K. "A Metal-Free, Free-Standing, Macroporous Graphene@g-C3N4Composite Air Electrode for High-Energy Lithium Oxygen Batteries" Small; 2015; 11; 2817.
[36] Luo, Y.; Lu, F.; Jin, C.; Wang. Y, Yang, R.; Yang, C. "NiCo2O4@La0.8Sr0.2MnO3 core–shell structured nanorods as efficient electrocatalyst for LiO2 battery with enhanced performances" Journal of Power Sources; 2016; 319; 19.
[37] Zhang, P.; Wang, R.; He, M.; Lang, J.; Xu, S.; Yan, X "3D Hierarchical Co/CoO-Graphene-Carbonized Melamine Foam as a Superior Cathode toward Long-Life Lithium Oxygen Batteries" Advanced Functional Materials. 2016; 26; 1354.
[38] Wang, Z.; You, Y.; Yuan, J.; Yin, Y. X.; Li, Y-T.; Xin, S. "Nickel-Doped La0.8Sr0.2Mn1–xNixO3 Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithium–Air Batteries" ACS Applied Materials & Interfaces; 2016; 8; 6520.
[39] Mei, D.; Yuan, X.; Ma, Z.; Wei, P.; Yu, X.; Yang, J. "A SnO2-Based Cathode Catalyst for Lithium-Air Batteries" ACS Applied Materials & Interfaces; 2016; 8; 12804.
[40] Zhang, S. S.; Foster, D.; Read, J. "Discharge characteristic of a non-aqueous electrolyte Li/O2 battery" J Power Sources; 2010; 195.
[41] Yang, X-h.; He, P.; Xia, Y-y. "Preparation of mesocellular carbon foam and its application for lithium/oxygen battery" Electrochemistry Communications; 2009; 11; 1127.
[42] Li, Y.; Wang, J.; Li, X.; Geng, D.; Li, R.; Sun, X. "Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery" Chemical Communications; 2011; 47; 9438.
[43] Li, Y.; Wang, J.; Li, X.; Liu, J.; Geng, D.; Yang, J. "Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries" Electrochemistry Communications; 2011; 13; 668.
[44] Lu, Y-C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. "The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries" Electrochemical and Solid-State Letters; 2010; 13; A69.
[45] Débart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. "a-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries" Angew Chem; 2008; 47.
[46] Débart, A,.; Bao, J.; Armstrong, G.; Bruce, P. G. "An O2 cathode for rechargeable lithium batteries: The effect of a catalyst" Journal of Power Sources; 2007; 174; 1177.
[47] Kim, K. S.; Park, Y. J.; "Catalytic properties of Co3O4nanoparticles for rechargeable Li/air batteries" Nanoscale Research Letters; 2012; 7; 47.
[48] Zhou, Y-X.; Yao, H-B.; Wang, Y.; Liu, H-L.; Gao, M-R.; Shen, P-K." Hierarchical Hollow Co9S8 Microspheres: Solvothermal Synthesis, Magnetic, Electrochemical, and Electrocatalytic Properties" Chemistry – A European Journal; 2010; 16; 12000.
[49] Gao, M-R.; Liu, S.; Jiang, J.; Cui, C-H.; Yao, W-T.; Yu, S-H. "In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance" Journal of Materials Chemistry; 2010; 20; 9355.
[50] Dong, S.; Wang, S.; Guan, J.; Li, S.; Lan, Z.; Chen, C. "Insight into Enhanced Cycling Performance of Li–O2 Batteries Based on Binary CoSe2/CoO Nanocomposite Electrodes" The Journal of Physical Chemistry Letters; 2014; 5; 615.
[51] Cindrella, L.; Kannan,A. M.; Lin, J. F.; Saminathan, K.; Ho, Y.; Lin, C. W. "Gas diffusion layer for proton exchange membrane fuel cells—A review" Journal of Power Sources; 2009; 194;146.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top