跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅冠維
研究生(外文):Guan-Wei Fu
論文名稱:以溶膠凝膠法於不同氧分壓退火製備赤銅鐵礦-CuFeO2薄膜
論文名稱(外文):Preparation of Delafossite-CuFeO2 Thin Films at Different Oxygen Partial Pressure in the Post-annealing Conditions by Sol-gel Method
指導教授:陳弘穎陳弘穎引用關係
指導教授(外文):Hong-Ying Chen
口試委員:何詠碩韓聖陳弘穎
口試委員(外文):Yung-Shou HoSheng HanHong-Ying Chen
口試日期:2014-05-23
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:76
中文關鍵詞:赤銅鐵礦CuFeO2薄膜溶膠-凝膠法氧分壓溫度
外文關鍵詞:DelafossiteCuFeO2thin filmssol-gel methodpartial oxygen pressuretemperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:564
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討退火中的氧分壓(pO2)及溫度對於生成赤銅鐵礦-CuFeO2薄膜的影響。先以溶膠-凝膠法在石英基材上鍍上一層薄膜後,再於500℃空氣退火1小時,最後再以溫度500-850℃及氧分壓pO2=10-2-5×10-5 atm中進行退火2小時及12小時。由X光繞射結果顯示在pO2=10-2 atm及溫度低於800℃退火2小時;pO2=10-3 atm及溫度低於600℃退火2小時;pO2=5×10-5 atm及溫度低於550℃退火2小時,會生成CuO與CuFe2O4的混合相;而將退火時間延長至12小時,則會生成赤銅鐵礦-CuFeO2的單一純相。FE-SEM結果顯示,當薄膜為CuO與CuFe2O4的混合相時,其表面為奈米顆粒形貌;而生成赤銅鐵礦-CuFeO2時,表面則為晶粒狀,且厚度約為70-95 nm。赤銅鐵礦-CuFeO2薄膜在可見光的穿透率介於30%至60%間,對應的光學能隙值約在3.12-3.21 eV之間。赤銅鐵礦-CuFeO2薄膜的導電率為6.5×〖10〗^(-2)-0.637 S/cm,載子濃度為(0.432-22.3)×〖10〗^17 cm-3,活化能為101-184 meV,由霍爾係數及Seebeck係數證實赤銅鐵礦-CuFeO2薄膜為p型。本研究結果推論退火過程中的氧分壓與退火溫度對於生成赤銅鐵礦-CuFeO2薄膜扮演著關鍵性的因素。
In this study, we discuss the effect of partial oxygen pressure (pO2) and temperature in the post-annealing process on the formation of the delafossite-CuFeO2 thin films. The sol-gel derived films deposited on the quartz substrate were annealed at 500℃ for 1h in air and post-annealed at 500-850℃ in pO2=10-2-5×10-5 atm for 2 and 12 h. CuO and CuFe2O4 phases were found when the specimens were post-annealed below 800℃ in pO2=10-2 atm for 2 h, 600℃ in pO2=10-3 atm for 2 h, and 550℃ in pO2=5×10-5 atm for 2 h. The delafossite-CuFeO2 phase appeared when the specimens were post-annealed at 800℃ in pO2=10-2 atm for 12 h, 600℃ in pO2=10-3 atm for 12 h, and 550℃ in pO2=5×10-5 atm for 12 h. The surface became nanoparticle-like morphology when the thin films had CuO and CuFe2O4 phases. However, the formation of delafossite-CuFeO2 resulted in the granular feature. The thickness of the thin films was approximately 70-95 nm. The transmittance of delafossite-CuFeO2 thin films was between 30% and 60% in the visible region and the optical bandgap of the films was between 3.12 eV and 3.21 eV. The electrical conductivities of delafossite- CuFeO2 thin films were 6.5×〖10〗^(-2)-0.637 S/cm with carrier concentrations of (0.432-22.3)×〖10〗^17 cm-3 and the activation energy of 103-177 meV. The p-type characteristics of the delafossite-CuFeO2 thin films were confirmed by Hall and Seebeck coefficients. Consequently, the partial oxygen pressure and temperature in the post-annealing process play key factor for the formation of delafossite-CuFeO2 thin films.
摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 前言 1
1-1 透明導電氧化薄膜 1
1-2 p型透明導電膜 2
1-3 赤銅鐵礦結構介紹 5
1-4 溶膠凝膠法製備 7
1-5成膜的影響因素 10
1-6研究動機與目的 12
第二章 文獻回顧 14
2-1 CuFeO2薄膜製備技術 14
2-1-1 溶膠-凝膠法 14
2-1-2 電化學沉積法 15
2-1-3 脈衝雷射沉積法 16
2-2 CuFeO2粉末製備技術 20
2-2-1 甘胺酸硝酸鹽燃燒法 20
2-2-2 固態反應法 21
2-2-3 水熱法 22
2-2-4 靜電紡絲法 23
2-2-5 燒結反應法 24
第三章 實驗方法 27
3-1 實驗流程圖 27
3-2 CuFeO2薄膜製備 28
3-3 實驗分析儀器及原理介紹 30
3-3-1 X光繞射分析儀 30
3-3-2 場發射掃描式電子顯微鏡 32
3-3-3 紫外光-可見光吸收光譜儀 33
3-3-4 霍爾量測儀 35
3-3-5 熱電量測 36
3-3-6 Seebeck效應量測 38
第四章 結果與討論 39
4-1 X光繞射分析 39
4-2 表面形貌分析 46
4-3 光學特性分析 51
4-4 熱力學分析 57
4-5 電性分析 60
第五章 結論 68
參考文獻 70
著作 75
簡歷 76

[1]Lin Lu, Jia-Zhao Wang, Xue-Bin Zhu, Xuan-Wen Gao, Hua-Kun Liu, High capacity and high rate capability of nanostructured CuFeO2 anode materials for lithium-ion batteries, Journal of Power Sources 196 (2011) 7025.
[2]Jahangeer Ahmed, Colin K. Blakely , Jai Prakash , Shaun R. Bruno , Mingzhe Yu, Yiying Wu, Viktor V. Poltavets , Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications, Journal of Alloys and Compounds 591 (2014) 275.
[3]Carrie G. Read, Yiseul Park, Kyoung-Shin Choi, Electrochemical Synthesis of p-Type CuFeO2 Electrodes for Use in a Phot-
oelectrochemical Cell, The Journal of Physical Chemistry Letters 3 ( 2012) 1872.
[4]R.K. Gupta, M. Cavas, Ahmed A. Al-Ghamdi, Z.H. Gafer, F. El-Tantawy,F. Yakuphanoglu, Electrical and photoresponse properties of Al/p-CuFeO2/p-Si/Al MTCOS photodiode, Solar Energy 92 (2013) 1.
[5]Sunyoung Sohn, Hwa-Min Kim, Transparent Conductive Oxide (TCO) Films for Organic Light Emissive Devices (OLEDs), 2011.
[6]Hiroshi Kawazoe, Hiroshi Yanagi, Kazushige Ueda, Hideo Hosono, Transparent p-Type Conducting Oxides: Design and Fabrication of
p-n Heterojunctions, MRS BULLETIN 25 (2000) 28.
[7]A.N. Banerjee, K.K. Chattopadhyay, Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin film, Progress in Crystal Growth and Characterization of Materials 50 (2005) 52.
[8]Taieb Elkhouni, Mongi Amami1, Pierre Strobel, Abdelhamid Ben Salah, Structural and Magnetic Properties of Substituted Delafossite-Type Oxides CuCr1 − xScxO2, Journal of Condensed Matter Physics 3 (2013) 1.
[9]A. Mary Sukeshini, Hironori Kobayashi, Mitsuharu Tabuchi, Hiroyuki Kageyama, Physicochemical characterization of CuFeO2 and lithium intercalation, Solid State Ionics 128 (2000) 33.
[10]Meagen A. Marquardt, Nathan A. Ashmore, David P. Cann, Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films 496 (2006) 146.
[11]蔡裕榮, 周禮君, 以溶膠凝膠法製備透明導電氧化物薄膜的探討, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 60 (2002) 307.
[12]S.M.Attia, Jue WANG, Guangming WU, Jun SHEN, Jianhua MA Review on Sol-Gel Derived Coatings: Process, Techniques and Optical Applications, J.Mater.Sci.Technol 18(2002) 211.
[13]Hiroshi Kawazoe, Masahiro Yasukawa, Hiroyuki Hyodo, Masaaki Kurita, Hiroshi Yanagi, Hideo Hosono, P-type electrical conduction in transparent thin films of CuAlO2, NATURE 389 (1997) 939.
[14]Hong-Ying Chen, Kuei-Ping Chang, Influence of Post-Annealing Conditions on the Formation of Delafossite-CuCrO2 Films, ECS Journal of Solid State Science and Technology 2 (2013) 76.
[15]Hong-Ying Chen, Jia-Hao Wu, Characterization and optoelectronic properties of sol–gel-derived CuFeO2 thin film, Thin Solid Films 520 (2012) 5029.
[16]Zanhong Deng, Xiaodong Fang, Suzhen Wu, Yiping Zhao, Weiwei Dong, Jingzhen Shao, Shimao Wang, Structure and optoelectronic properties of Mg-doped CuFeO2 thin films prepared by sol–gel method, Journal of Alloys and Compounds 577 (2013) 658.
[17]A. Barnabé , E. Mugnier, L. Presmanes, Ph. Tailhades, Preparation of delafossite CuFeO2 thin films by rf-sputtering on conventional glass substrate, Materials Letters 60 (2006) 3468.
[18]E. Mugnier , A. Barnabé, L. Presmanes, Ph. Tailhades, Thin films preparation by rf-sputtering of copper/iron ceramic targets with
Cu/Fe=1: From nanocomposites to delafossite compounds, Thin Solid Films 516 (2008) 1453.
[19]Dong Hyeok Choi, Seung Je Moon, Jong Soo Hong, Sung Yong An, In-Bo Shim, Chul Sung Kim, Impurity dependent semiconductor type of epitaxial CuFeO2 (111) thin films deposited by using a pulsed laser deposition, Thin Solid Films 517 (2009) 3987.
[20]S.Z. Li, J. Liu, X.Z Wang, B.W. Yan,H.Li, J.–M. Liu, Epitaxial growth of delafossite CuFeO2 thin films by pulse laser deposition, Physica B 407 (2012) 2412.
[21]Te-Wei Chiu, Ping-Shuo Huang, Preparation of delafossite CuFeO2 coral-like powder using a self-combustion glycine nitrate process, Ceramics International 39 (2013) S575.
[22]T. Elkhouni, M. Amami, C.V. Colin, A. Ben Salah, Structural and magnetoelectric interactions of (Ca, Mg)-doped polycrystalline multiferroic CuFeO2, Materials Research Bulletin 53 (2014) 151.
[23]Chesta Ruttanapun, Banjong Boonchom, Montree Thongkam, Samart Kongtaweelert, Chanchana Thanachayanont, Aree Wichainchai, Electrical and optical properties of p-type CuFe1-xSnxO2 (x=0.03, 0.05) delafossite-oxide, JOURNAL OF APPLIED PHYSICS 113 (2013) 023103.
[24]Chesta Ruttanapun, Wutthisak Prachamon, Aree Wichainchai, Optoelectronic properties of Cu1-xPtxFeO2 (0≤x≤0.05) delafossite for p-type transparent conducting oxide, Current Applied Physics 12 (2012) 166.
[25]Chesta Ruttanapun, Effects of Pd substitution on the thermoelectric and electronic properties of delafossite Cu1-xPdxFeO2 (x=0.01, 0.03 and 0.05), Journal of Solid State Chemistry 215 (2014) 43.
[26]Hong-Ying Chen, Jun-Rong Fu, Delafossite–CuFeO2 thin films prepared by atmospheric pressure plasma annealing, Materials Letters 120 (2014) 47.
[27]M. M. Moharam , M. M. Rashad ,E. M. Elsayed , R. M. Abou-Shahba, A facile novel synthesis of delafossite CuFeO2 powders, J Mater Sci: Mater Electron 25 (2014) 1798.
[28]Julia Patzsch, Ildiko Balog, Peter Krauß, Christian W. Lehmann, Jörg J. Schneider, Synthesis, characterization and p–n type gas sensing behaviour of CuFeO2 delafossite type inorganic wires using Fe and Cu complexes as single source molecular precursors, RSC Advances 4 (2014) 15348.
[29]Yi-Cheng Liou, Li-Shin Chang , Yang-Ming Lu, Hong-Chou Tsai, Uang-Ru Lee, Effects of mechanical milling on preparation and properties of CuAl1-xFexO2 thermoelectric ceramics, Ceramics International 38 (2012) 3619.
[30]S. Santra , N.S. Das, K.K. Chattopadhyay, Sol–gel synthesis and characterization of wide band gap p-type nanocrystalline CuBO2, Materials Letters 92 (2013) 198.
[31]鄭信民, 林麗娟, X光繞射應用簡介, 工業材料雜 181期 (91年) 100.
[32]林麗娟, X光繞射原理及其應用, 工業材料雜誌 86期 (83年) 101.
[33]Robert Green, Hall Effect Measurements in Materials Characterization, Senior Market Development Manager Keithley Instruments, Inc.
[34]Hiroki Hiraga, Takayuki Makino, Tomoteru Fukumura, HongmingWeng, Masashi Kawasaki, Electronic structure of the delafossite-type CuMO2 (M = Sc, Cr, Mn, Fe, and Co):Optical absorption measurements and first-principles calculations, PHYSICAL REVIEW B 84 (2011) 041411.
[35]Schmahl, N.G., Muller, F., Investigations into Equilibria in the System Copper-Iron-Oxygen, Arch.Eisenhuettenwes., 35 (1964) 527.
[36]Li Zhang, Ping Li, Kai Huang, Zhen Tang, Guohong Liu, Yibao Li, Chemical solution deposition and transport properties of epitaxial CuFeO2 thin film, Materials Letters 65 (2011) 3289.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top