跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/17 07:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張世昌
研究生(外文):Shih-Chang Chang
論文名稱:以熱溶劑迴流法與熱退火製備銅錫硫與銅錫硒薄膜太陽能電池吸收層之研究
論文名稱(外文):Synthesis of Cu2SnS3 and Cu2SnSe3 Absorbers for Thin-Film Solar Cell by Solvent-Thermal Refluxing Method and Annealing
指導教授:許世昌許世昌引用關係
指導教授(外文):Shih-Chang Shei
口試委員:陳祥甘廣宙黃文昌
口試委員(外文):Siang ChenGuang-Jhou GanWun-Chang Huang
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:79
中文關鍵詞:銅錫硫銅錫硒薄膜太陽能電池吸收層熱溶劑迴流法
外文關鍵詞:Cu2SnS3Cu2SnSe3Absorbers for Thin-Film Solar CellSolvent-Thermal Refluxing Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究I–IV–VI族三元化合物,利用簡單、低成本的熱溶劑回流法製備I–IV–VI族三元化合物之前驅層,經過熱退火處理後,可得到I–IV–VI族三元化合物薄膜,此薄膜適用於薄膜太陽能電池之吸收層。首先我們利用熱溶劑回流法製備不同濃度的銅錫硫前驅層溶液,在硫的氛圍下將銅錫硫前驅層進行熱退火處理,發現在較低濃度、沒有三元相存在的前驅層,經過硫化熱處理後可以得到單一的銅錫硫三元相為P-type的薄膜,其載子濃度為5.23×1017 cm-3、載子遷移率為 14.2 cm2 V−1 s−1,適合作為薄膜太陽能電池之吸收層。
其次,我們利用熱溶劑回流法製備不同合成時間的銅錫硒前驅層溶液,發現在較長的合成時間下,可以得到單一相的三元銅錫硒薄膜,在較短的合成時間下,前驅層充滿尚未反應的銅錫硒原子團。將製備的前驅層在硒的氛圍下進行熱處理,發現經過較長合成時間的薄膜產生強烈的銅硒二元相,其三元相結構也被破壞、減弱,相較之下,經過較短合成時間的薄膜產生單一的三元相,而且顆粒有明顯的增大,經過硒化熱處理後可以得到單一的銅錫硒三元相為P-type的薄膜,其載子濃度為1.9×1017 cm−3、載子遷移率為 13.66 cm2 V−1 s−1,薄膜適合作為薄膜太陽能電池之吸收層。
本論文利用一個較簡單、低成本且較無毒的熱溶劑回流法,經過熱退火處理後,得到I–IV–VI族三元化合物薄膜,經測量後證明此薄膜適合作為薄膜太陽能電池之吸收層。

In this study, we investigated the ternary I–IV–VI compounds semiconductor layer synthesized by a simple and low-cost solvent-thermal refluxing method follow annealing. The thin films are suitable to be absorber layer of solar cells. At first, we fabricated the varied concentration of Cu-Sn-S precursor ink. After sulfurization, we obtained pure phase of CTS by sulfurizing the Cu-Sn-S precursor of the lower concentration. The CTS thin film is p-type with a carrier concentration of ∼5.23×1017 cm-3, and hole mobility of 14.2 cm2 V−1 s−1, which is suitable to be absorber layer of solar cells.
We fabricated the Cu-Sn-Se precursor ink by different reaction time. At the longer reaction time, we obtained pure phase of CTSe. At the shorter reaction time, we obtained Cu2-xSe crystals and unformed Cu-Sn-Se groups. After selenization, the structures of Cu2SnSe3 were destructured and binary CuSe appeared. In contrast, after selenization, the precursors of short reaction time transform into pure Cu2SnSe3. The CTSe thin film is p-type with a carrier concentration of ∼1.9×1017 cm−3, and higher hole mobility of 13.66 cm2 V−1 s−1, which is suitable to be absorber layer of solar cells.
In this study, we fabricated the ternary I–IV–VI compounds thin films by a simple and low-cost solvent-thermal refluxing method and and annealing.

摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Figures vi
List of Tables viii
Chapter 1. Introduction 1
1-1 Background 1
1-2 History of photovoltaic (PV) 1
1-3 Development of Thin film solar cells 3
1-3-1 Amorphous Silicon Solar Cell 3
1-3-2 Cadmium Telluride Thin Film Solar Cell 3
1-3-3 Copper Indium Gallium Diselenide Thin Film Solar Cell 4
1-3-4 Kesterite based and Thin film Chalcogenide Solar Cells 4
1-4 Literature review of Cu2SnS3 5
1-4-1 Electron Beam Evaporation 6
1-4-2 Dc Magnetron Sputtering 6
1-4-2 Successive Ionic Layer Adsorption and Reaction (SILAR) 7
1-4-4 Solvothermal Method 7
1-5 Literature review of Cu2SnSe3 8
1-5-1 Co-evaporation 8
1-5-2 Single-step D.C. sputtering 9
1-5-3 Colloidal Methods 10
1-6 Motivation 10
1-7 Contribution of thid thesis 10
1-8 Structure of this thesis 11
1-9 References 11
Chapter 2 Fabrication and sulfurization of Cu2SnS3 thin films by reaction rate tuning the concentration of Cu-Sn-S precursor ink. 17
2-1 Introduction 18
2-2 Experiment 20
2-3 Results and Discussion 21
2-3-1 Characterization of the synthesized Cu-Sn-S precursor after sulfurization and the formation mechanism related to solution concentration 21
2-3-2 Characterization of CTS films following sulfurization for varied sulfurization time 25
2-4 Summary 29
2-5 References 30
Chapter 3 Fabrication and selenization of Cu2SnSe3 thin films by varied the reaction time of Cu-Sn-Se precursor ink 45
3-1 Introduction 45
3-2 Experiment 47
3-3 Results and Discussion 48
3-3-1 Characterization of the synthesized Cu-Sn-Se precursor nanoinks and after selenization and the formation mechanism related to different reaction time 48
3-3-2 Characterization of CTSe films after selenization for varied temperature 55
3-4 Summary 57
3-5 References 58
Chapter 4 Conclusions and Future work 78
4-1 Conclusions 78
4-2 Future work 78

[1]Mars solar : http://www.marssolar.de/solarstrominfos.html. 2015
[2]D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, pp. 676, 1954.
[3]S. Wagner, J. L. Shay, P. Migliorato, and H. M. Kasper, "CuInSe2/CdS Heterojunction Photovoltaic Detectors," Applied Physics Letters, vol. 25, pp. 434-435, 1974.
[4]J. L. Shay, S. Wagner, and H. M. Kasper, "Efficient CuInSe2/CdS Solar Cells," Applied Physics Letters, vol. 27, pp. 89, 1975.
[5]I. Repins, M. A. Contreras, B. Egaas, C. DeHart, John Scharf, C. L. Perkins, B. To, and R. Noufi, "19.9% Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor," Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008.
[6]D. E. Carlson, C. R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, pp. 671, 1976.
[7]Wronski C, Carlson D, in Archer M, Hill R, Eds, "Amorphous Silicon Solar Cells," Clean Electricity from Photovoltaics, pp. 199-243, 2001.
[8]J. Yang, A. Banerjee and S. Guha, "Triple-Junction Amorphous Silicon Alloy Solar Cell with 14.6% Initial and 13.0% Stable Conversion Efficiencies," Applied Physics Letters, vol. 70, pp.2975, 1997.
[9]A. Rothwarf, K.W. Böer, "Direct Conversion of Solar Energy Through Photovoltaic Cells," Progress in Solid State Chemistry, vol. 10, pp. 71-102, 1975.
[10]B. E. McCandless and J. R. Sites, "Cadmium Telluride Solar Cells," Solar Energy and Photovoltaics, ch.14, 2011.
[11]R. Frerichs, "The Photo-Conductivity of Incomplete Phosphors," Physical Review Letters, vol. 72, pp. 594-601, 1947.
[12]D. A. Jenny, R. H. Bube, "Semiconducting Cadmium Telluride," Physical Review Letters, vol. 96, pp. 1190-1191, 1954.
[13]Kr¨uger F, de Nobel D, J. Electron. 1, pp. 190-202, 1955.
[14]D de Nobel, Philips Res. Repts vol. 14, pp. 361–399 and pp. 430–492, 1959.
[15]S. Schorr, " Structural Aspects of Adamantine Like Multinary Chalcogenides, " Thin Solid Films, vol. 515, pp.5985-5991, 2007.
[16]K. lto, T. Nakazawa, " Electrical and Optical Properties of Stannie-Type Qua-ternary Semiconductor Thin Films, " Japanese Journal of Applied Physics i, vol. 27, pp. 2094, 1988.
[17]H. Katagirl, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi and T. Yokota, “ Prepa-ration and evaluation of Cu2ZnSnS4 thin film by sulfurization of E –B evaporated precursors,” Solar Energy Materials and Solar cells, vol. 49, 407, 1997.
[18]Kotaro Chino, Junpei Koike, Shinya Eguchi, Hideaki Araki, Ryota Nakamura, Kazuo Jimbo and Hironori Katagiri, " Preparation of Cu2SnS3Thin Films by Sulfurization of Cu/Sn Stacked Precursors, " Japanese Journal of Applied Physics, vol. 51, No. 10.1143, 2012.
[19]P. A. Fernandes, P. M. P. Salom´e and A. F. da Cunha, " A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors, " Journal of Physics D: Applied Physics, vol. 43, No. 215403, 2010.
[20]Hao Guan, Honglie Shen, Chao Gao, Xiancong He, " Structural and optical properties of Cu2SnS3 and Cu3SnS4 thin films by successive ionic layer adsorption and reaction, " Journal of Materials Science: Materials in Electronics, vol. 24, issue 5, pp. 1490-1494, 2012.
[21]Yu Tan, Zhiqun Lin, Wenhui Ren, Woyun Long, Yong Wang, Xicheng Ouyang, " Facile solvothermal synthesis of Cu2SnS3 architectures and their visible-light-driven photocatalytic properties, " Materials Letters, vol. 89, pp. 240-242, 2012.
[22]Kang Min Kim, Hitoshi Tampo, Hajime Shibata, Shigeru Niki, "Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications," Thin Solid Films, vol. 536, pp. 111-114, 2013.
[23]Dong-Hau Kuo, Wei-Di Haung, Ying-Sheng Huang, Jiun-De Wu, Yan-Jih Lin, " Single-step sputtered Cu2SnSe3 films using the targets composed of Cu2Se and SnSe2, " Thin Solid Films, vol. 518, issue 24, pp. 7218-7221, 2010.
[24]Maria Ib´a~nez, Doris Cadavid, Umberto Anselmi-Tamburini, Reza Zamani, St´ephaneGorsse, Wenhua Li, Antonio M. L´opez, Joan Ramon Morante, JordiArbiol, Andreu Cabot , " Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals, " Journal of Materials Chemistry A, vol. 1, issue 4, pp. 1421-1426, 2013.
[25]MahshidAhmadi, Stevin S. Pramana, Sudip K. Batabyal, Chris Boothroyd, Subodh G. Mhaisalkar, Yeng Ming Lam, " Synthesis of Cu2SnSe3 Nanocrystals for Solution Processable Photovoltaic Cells, " Inorganic Chemistry, vol. 52, pp. 1722 – 1728, 2013.


[1]Philip Jackson, Dimitrios Hariskos, nErwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann and Michael Powalla, " New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%," Progress in Photovoltaics: Research and Applications, vol. 19, issue 7, pp. 894-897, 2011.
[2]David B. Mitzi, Oki Gunawan, Teodor K. Todorov, Kejia Wang, Supratik Guha, " The path towards a high-performance solution-processed kesterite solar cell," Solar Energy Materials & Solar Cells, vol. 95, issue 6, pp. 1421-1436, 2011.
[3]Susanne Siebentritt and Susan Schorr, " Kesterites—a challenging material for solar cells," Progress in Photovoltaics: Research and Applications, vol. 20, issue 5, pp. 512-519, 2012.
[4]Naoya Aihara, Hideaki Araki, Akiko Takeuchi, Kazuo Jimbo and Hironori Katagiri, " Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu-Sn precursors for solar cells," Physica Status Solidi (c), vol. 10, issue 7-8, pp.1086-1092, 2013.
[5]Pengyi Zhao and Shuying Cheng, " Influence of Sulfurization Temperature on Photoelectric Properties Cu2SnS3 Thin Films Deposited by Magnetron Sputtering, " Advances in Materials Science and Engineering, vol. 2013, No. 726080, 2013.
[6]Kotaro Chino, Junpei Koike, Shinya Eguchi, Hideaki Araki, Ryota Nakamura, Kazuo Jimbo and Hironori Katagiri, " Preparation of Cu2SnS3 Thin Films by Sulfurization of Cu/Sn Stacked Precursors, " Japanese Journal of Applied Physics, vol. 51, No. 10.1143, 2012.
[7]Yu Tan, Zhiqun Lin, Wenhui Ren, Woyun Long, Yong Wang, Xicheng Ouyang, " Facile Solvothermal Synthesis of Cu2SnS3 Architectures and Their Visible-light-driven Photocatalytic properties, " Materials Letters, vol. 89, pp. 240-242, 2012.
[8]Takeshi Nomura, Tsuyoshi Maeda and Takahiro Wada, " Fabrication of Cu2SnS3 Solar Cells by Screen-printing and High-pressure Sintering Process," Japanese Journal of Applied Physics, vol. 53, No. 05FW01.
[9]Jun Han, Ying Zhou, Yang Tian, Ziheng Huang, Xiaohua Wang, Jie Zhong, Zhe Xia, Bo Yang, Haisheng Song, Jiang Tang, " Hydrazine Processed Cu2SnS3 Thin Film and Their Application for Photovoltaic Devices, " Front. Optoelectronics, vol. 7, issue 1, pp. 37-45, 2014.
[10]Lauryn L. Baranowski, PawelZawadzki, Steven Christensen, Dennis Nordlund, Stephan Lany, Adele C. Tamboli, Lynn Gedvilas, David S. Ginley, William Tumas, Eric S. Toberer, and Andriy Zakutayev, " Control of Doping in Cu2SnS3 through Defects and Alloying," Chemistry of Materials, vol. 26, pp. 4951-4959, 2014.
[11]S. Fiechter, M. Martinez, G. Schmidt, W. Henrion, Y. Tomm, " Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S, " Journal of Physics and Chemistry of Solids, vol. 64, issue 9-10, pp. 1859-1862, 2003.
[12]P. A. Fernandes, P. M. P. Salom´e and A. F. da Cunha, “A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors”, Journal of Physics D: Applied Physics, vol. 43, No. 215403, 2010.
[13]Haitao Zhang, Meng Xie, Shu Zhang, Yong Xiang, " Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors, " Journal of Alloys and Compounds, vol. 602, pp. 199-203, 2014.
[14]Dong-Hau Kuo, Wei-Di Haung , Ying-Sheng Huang, Jiun-De Wu, Yan-Jih Lin, " Single-step Sputtered Cu2SnSe3 Films Using the Targets Composed of Cu2Se and SnSe2, " Thin Solid Films, vol. 518, issue 24, pp. 7218-7221, 2010.
[15]Chi-Jie Wang, Shih-Chang Shei, and Shoou-Jinn Chang, " Synthesis and Characterization of CZTSe Nanoinks Using Polyetheramine as Solvent, " Optical Materials Express, vol. 4, issue 8, pp. 1593-1600, 2014.
[16]Renguo Xie, Michael Rutherford, and Xiaogang Peng, " Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors, " Journal of the American Chemical Society, vol. 131, pp. 5691-5697, 2009.
[17]Marc Steichen, Rabie Djemour, Levent Gütay, Jérôme Guillot, Susanne Siebentritt, and Phillip J. Dale, " Direct Synthesis of Single-Phase p-Type SnS by Electrodeposition from a Dicyanamide Ionic Liquid at High Temperature for Thin Film Solar Cells, " The Journal of Physical Chemistry C, vol. 117, issue 9, pp. 4383-4393, 2013.
[18] Hao Guan, Honglie Shen, Chao Gao, Xiancong He, " The influence of annealing atmosphere on the phase formation of Cu–Sn–S ternary compound by SILAR method, " Journal of Materials Science: Materials in Electronics, vol. 24, issue 9, pp. 3195-3198, 2013.
[19]R. Schurr, A. Hölzing, R. Hock, " Real-time Investigations on the Formation Reactions During Annealing of Sulfurized Cu–Sn Precursors, " Thin Solid Films, vol. 519, issue 21, pp. 7412–7415, 2011.
[20]P. A. Fernandesa, P. M. P. Saloméa, A. F. da Cunha, " Study of Polycrystalline Cu2ZnSnS4 Films by Raman Scattering, " Journal of Alloys and Compounds, Vol. 509, issue 28, pp. 7600–7606, 2011.
[21]S. Sohila, M. Rajalakshmi, Chanchal Ghosh, A.K. Arora, C. Muthamizhchelvan, " Optical and Raman Scattering Studies on SnS Nanoparticles, " Journal of Alloys and Compounds, vol. 509, pp. 5843–5847, 2011.
[22]B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, C. J. Chunnilall, " Raman Spectra of Thin Solid Films of Some Metal Sulfides, " Journal of Molecular Structure, vol. 410–411, pp. 267–270, 1997.
[23]Mehdi Adelifard, Mohamad Mehdi Bagheri Mohagheghi and Hosein Eshghi, " Preparation and Characterization of Cu2SnS3 Ternary Semiconductor Nanostructures Via the Spray Pyrolysis Technique for Photovoltaic Applications, " Physica Scripta, vol. 85, No. 3, 2012.
[24]Dong-HauKuo , Wei-Di Haung, Ying-Sheng Huang, Jiun-De Wu, Yan-Jih Lin , " Single-step Sputtered Cu2SnSe3 Films Using the Targets Composed of Cu2Se and SnSe2, " Thin Solid Films, vol. 518, pp. 7218-7221, 2010.
[25]Zeguo Tang, Yuki Nukui, Kiichi Kosaka, Naoki Ashida, Hikaru Uegaki, Takashi Minemoto, " Reduction of Secondary Phases in Cu2SnSe3 Absorbers for Solar Cell Application " Journal of Alloys and Compounds, vol. 608, pp. 213-219, 2014.


[1]MahshidAhmadi, Stevin S. Pramana, Sudip K. Batabyal, Chris Boothroyd, Subodh G. Mhaisalkar, Yeng Ming Lam, " Synthesis of Cu2SnSe3 Nanocrystals for Solution Processable Photovoltaic Cells, " Inorganic Chemistry, vol. 52, pp. 1722 – 1728, 2013.
[2]Kang Min Kim, Hitoshi Tampo, Hajime Shibata, Shigeru Niki, " Temperature induced phase transformation in coevaporated Cu2SnSe3 thin films, " Materials Letters, vol. 116, pp. 61-63, 2014.
[3]Dong-Hau Kuo , WalelignWubet, " Mg dopant in Cu2SnSe3: An n-type former and a promoter of electrical mobility up to 387 cm2 V−1 s−1, " Journal of Solid State Chemistry, vol. 218, pp. 44-49, 2014.
[4]Jianjun Wang, Ajay Singh, Pai Liu, Shalini Singh, Claudia Coughlan, YinaGuo, and Kevin M Ryan, " Colloidal Synthesis of Cu2SnSe3 Tetrapod Nanocrystals, " Journal of the American Chemical Society, vol. 135, pp. 7835-7838, 2013.
[5]Michelle E. Norako, Matthew J. Greaney, and Richard L. Brutchey, " Synthesis and Characterization of Wurtzite-Phase Copper Tin Selenide Nanocrystals, " Journal of the American Chemical Society, vol. 134, issue 1, pp. 23-26, 2012.
[6]Rachmat Adhi Wibowo, Stefan Moeckel, HyesunYoo, Astrid Hoelzing, Rainer Hock,Peter J. Wellmann, Formation of Cu2SnSe3 from stacked elemental layers investigated by combined in situ X-ray diffraction and differential scanning calorimetry techniques Journal of Alloys and Compounds,vol. 588, pp. 254-258, 2014.
[7]Kang Min Kim , Hitoshi Tampo, Hajime Shibata,ShigeruNiki , " Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications, " Thin Solid Films, vol. 536, pp. 111-114, 2013.
[8]Dong-HauKuo , Wei-Di Haung, Ying-Sheng Huang, Jiun-De Wu, Yan-Jih Lin , " Single-step sputtered Cu2SnSe3 films using the targets composed of Cu2Se and SnSe2, " Thin Solid Films, vol. 518, pp. 7218-7221, 2010.
[9]Maria Ib´a~nez, Doris Cadavid, Umberto Anselmi-Tamburini, Reza Zamani, St´ephaneGorsse, Wenhua Li, Antonio M. L´opez, Joan Ramon Morante, JordiArbiol, Andreu Cabot , " Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals, " Journal of Materials Chemistry A, vol. 1, issue 4, pp. 1421-1426, 2013.
[10]Bin Li, Yi Xie ,1 Jiaxing Huang, YitaiQian , " Synthesis, Characterization, and Properties of Nanocrystalline Cu2SnS3, " Journal of Solid State Chemistry, vol. 153, pp. 170-173, 2000.
[11]Wzy Mohammad Harati, JiaJia, Ke´vinGiffard, Kyle Pellarin, Carly Hewson, David A. Love, Woon Ming Lau, Zhifeng Ding, " One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells, " Physical Chemistry Chemical Physics, vol. 12, pp. 15282-15290, 2010.
[12]Fiechter, M. Martinez, G. Schmidt, W. Henrion, Y. Tomm , " Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S, " Journal of Physics and Chemistry of Solids, vol. 64, pp. 1859-1862, 2003.
[13]G. Suresh Babu, Y.B. Kishore Kumar, Y. Bharath Kumar Reddy, V. Sundara Raja, " Growth and characterization of Cu2SnSe3 thin films, " Materials Chemistry and Physics, vol. 96, pp. 442-446, 2006.
[14]David Avellaneda, M. T. S. Nair, and P. K. Nair, " Cu2SnS3 and Cu4SnS4 Thin Films via Chemical Deposition for Photovoltaic Application, " Journal of The Electrochemical Society, vol. 157, issue 6, pp. D346-D352, 2010.
[15]N. R. Mathews, J. TamyBenı´tez, F. Paraguay-Delgado, M. Pal , L. Huerta, " Formation of Cu2SnS3 thin film by the heat treatment of electrodeposited SnS–Cu layers, " J Mater Sci: Mater Electron, vol. 24, pp. 4060-4067, 2013.
[16]RenguoXie, Michael Rutherford, and XiaogangPeng, " Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors, " Journal of the American Chemical Society, vol. 131, pp. 5691-5697, 2009.
[17]G. Hema Chandra,O. Lakshmana Kumar,R. PrasadaRao, S. Uthanna, " Influence of substrate and selenization temperatures on the growth of Cu2SnSe3 films, " Journal of Materials Science, vol. 46, pp. 6952-6959, 2011.
[18]Hao Guan, Honglie Shen, Chao Gao, Xiancong He, " The influence of annealing atmosphere on the phase formation of Cu–Sn–S ternary compound by SILAR method, " Journal of Materials Science: Materials in Electronics, vol. 24, issue 9, pp. 3195-9398, 2013.
[19]Ara Cho, SeJinAhn, Jae Ho Yun , JihyeGwak , SeungKyuAhn , Keeshik Shin, JinsuYoo ,Hyunjoon Song , Kyunghoon Yoon, " The growth of Cu2 − xSe thin films using nanoparticles, " Thin Solid Films, vol. 546, pp. 299-307, 2013.
[20]Jianjun Wang, Ajay Singh, Pai Liu, Shalini Singh, Claudia Coughlan, YinaGuo, and Kevin M Ryan, " Colloidal Synthesis of Cu2SnSe3 Tetrapod Nanocrystals, " Journal of the American Chemical Society, vol. 135, pp. 7835-7838, 2013.
[21]S. Prucnal, F. Jiao, D. Reichel, K. Zhao, S. Cornelius, M. Turek,K. Pyszniak, A. Drozdziel, W. Skorupa, M. Helm and S. Zhou, " Influence of Flash Lamp Annealing on the Optical Properties of CIGS Layer, " Acta Physica Polonica A, vol. 125, issue 6, No. 1404, 2014.
[22]Wilman Septina, Shigeru Ikeda, Akio Kyoraiseki, Takashi Harada, Michio Matsumura, " Single-step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure, " Electrochimica Acta, vol. 88, pp. 436-442, 2013.
[23]B. H. Tseng, “ Preparation of Single-Phase CZTS Thin Films and the Control of Chemical Composition and Microstructure ,” http://www.aec.gov.tw/webpage/policy/plans/files/plans_04_e-101_30.pdf, 2012.
[24]Michelle E. Norako, Matthew J. Greaney, and Richard L. Brutchey, " Synthesis and Characterization of Wurtzite-Phase Copper Tin Selenide Nanocrystals, " Journal of the American Chemical Society, vol. 134, issue 1, pp. 23-26, 2012.
[25]Dong-Hau Kuo, Wei-Di Haung, Ying-Sheng Huang, Jiun-De Wu, Yan-Jih Lin, "Single-step sputtered Cu2SnSe3 films using the targets composed of Cu2Se and SnSe2, " Thin Solid Films, vol. 518, issue 24, pp. 7218-7221, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top