|
References 1. Ohashi, K., S. Fujiwara, and K. Mizuno, Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem, 2017. 161(3): p. 245-254. 2. Happe, C.L. and A.J. Engler, Mechanical Forces Reshape Differentiation Cues That Guide Cardiomyogenesis. Circ Res, 2016. 118(2): p. 296-310. 3. Vasquez, C.G. and A.C. Martin, Force transmission in epithelial tissues. Dev Dyn, 2016. 245(3): p. 361-71. 4. Geng, J., et al., In Touch With the Mechanosensitive Piezo Channels: Structure, Ion Permeation, and Mechanotransduction. Curr Top Membr, 2017. 79: p. 159-195. 5. Dupont, S., et al., Role of YAP/TAZ in mechanotransduction. Nature, 2011. 474: p. 179. 6. Takeichi, M., Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nature Reviews Molecular Cell Biology, 2014. 15(6): p. 397-410. 7. Yamada, S., et al., Deconstructing the Cadherin-Catenin-Actin Complex. Cell, 2005. 123(5): p. 889-901. 8. Wheelock, M.J., et al., Cadherin switching. J Cell Sci, 2008. 121(Pt 6): p. 727-35. 9. Roy, V.F. and G. Berx, The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci, 2008. 65(23): p. 3756-88. 10. Yonemura, S., et al., α-Catenin as a tension transducer that induces adherens junction development. Nature Cell Biology, 2010. 12(6): p. 533-542. 11. Blake, D.J., et al., Function and Genetics of Dystrophin and Dystrophin-Related Proteins in Muscle. Physiol Rev, 2002. 82: p. 291-329. 12. Perkins, K.J. and K.E. Davies, The role of utrophin in the potential therapy of Duchenne muscular dystrophy. Neuromuscular Disorders, 2008. 12: p. S78-S89. 13. Moore, C.J. and S.J. Winder, Dystroglycan versatility in cell adhesion: a tale of multiple motifs. Cell Commun Signal, 2010. 8: p. 3. 14. Montesano, R., et al., Isolation of EpH4 mammary epithelial cell subpopulations which differ in their morphogenetic properties. In Vitro Cell Dev Biol Anim, 1998. 34(6): p. 468-77. 15. Sawicka, A., et al., Micropipette force probe to quantify single-cell force generation: application to T-cell activation. Mol Biol Cell, 2017. 28(23): p. 3229-3239. 16. Park, S., J. Kim, and S.-H. Yoon, A Review on Quantitative Measurement of Cell Adhesion Strength. Journal of Nanoscience and Nanotechnology, 2016. 16(5): p. 4256-4273. 17. Dembo, M. and Y.L. Wang, Stresses at the Cell-to-Substrate Interface during Locomotion of Fibroblasts. Biophys. J., 1999. 76: p. 2307-2316. 18. Rape, A.D., W.H. Guo, and Y.L. Wang, The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials, 2011. 32(8): p. 2043-51. 19. Lo, C.M., et al., Cell Movement Is Guided by the Rigidity of the Substrate. Biophys. J., 2000. 79: p. 144-152. 20. Nestor-Bergmann, A., G. Goddard, and S. Woolner, Force and the spindle: mechanical cues in mitotic spindle orientation. Semin Cell Dev Biol, 2014. 34: p. 133-9. 21. Lee, J., et al., Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 2014. 38: p. 209-218. 22. Martyn, I., A.H. Brivanlou, and E.D. Siggia, A wave of WNT signaling balanced by secreted inhibitors controls primitive streak formation in micropattern colonies of human embryonic stem cells. Development, 2019. 146(6). 23. Albert, P.J. and U.S. Schwarz, Dynamics of Cell Ensembles on Adhesive Micropatterns: Bridging the Gap between Single Cell Spreading and Collective Cell Migration. PLoS Comput Biol, 2016. 12(4): p. e1004863. 24. Vignaud, T., H. Ennomani, and M. Thery, Polyacrylamide hydrogel micropatterning. Methods Cell Biol, 2014. 120: p. 93-116. 25. Azioune, A., et al., Protein Micropatterns. 2010. 97: p. 133-146. 26. Tse, J.R. and A.J. Engler, Preparation of Hydrogel Substrates with Tunable Mechanical Properties. Current Protocols in Cell Biology, 2010. 47(1): p. 10.16.1-10.16.16. 27. Borghi, N., et al., Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci U S A, 2010. 107(30): p. 13324-9. 28. Chu, Y.S., et al., Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J Cell Biol, 2004. 167(6): p. 1183-94. 29. Wegener, J., C.R. Keese, and I. Giaever, Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res, 2000. 259(1): p. 158-66. 30. Cavallini, F. and M. Tarantola, ECIS based wounding and reorganization of cardiomyocytes and fibroblasts in co-cultures. Prog Biophys Mol Biol, 2019. 144: p. 116-127. 31. Lo, C.M., C.R. Keese, and I. Giaever, Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys. J., 1995. 69: p. 2800-2807. 32. Buckley, C.D., et al., Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science, 2014. 346(6209): p. 1254211. 33. Kourtidis, A., S.P. Ngok, and P.Z. Anastasiadis, p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. Prog Mol Biol Transl Sci, 2013. 116: p. 409-32.
|