|
1.5. References 1. J. Achanl, A. O. Talisuna, A. Erhart, A. Yeka, J. K. Tibenderana, F. N. Baliraine, P. J. Rosenthal and U. D’Alessandro, Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria, Malaria Journal., 2011, 10, 144. 2. W. H. Melhuish, QUANTUM EFFICIENCIES OF FLUORESCENCE OF ORGANIC SUBSTANCES: EFFECT OF SOLVENT AND CONCENTRATION OF THE FLUORESCENT SOLUTE1, J. Phys. Chem., 1961, 65, 229. 3. J. E. Sabol and M. G. Rockley, Absolute fluorescence quantum yields by relative fluorescence and photoacoustic measurements of low level luminescence quenching, J. Photochem. Photobiol. A., 1987, 40, 245. 4. J. N. Demes and G. A. Graby, Measurement of photoluminescence quantum yields. Review, J. Phys. Chem., 1971, 75, 991. 5. W.H. Melhuish, A STANDARD FLUORESCENCE SPECTRUM FOR CALIBRATING SPECTRO-FLUOROPHOTOMETERS.; J. Phys. Chem., 1960,64,762. 6. S.G. Schulman, R.M. Threatte, A.C. Capomacchia, W.L. Poul., Fluorescence of 6-methoxyquinoline, quinine, and quinidine in aqueous media., J. Pharm. Sci., 1974, 63, 876 7. D.V. O’Connor, S.R. Meech, D. Phillips,; Complex fluorescence decay of quinine bisulphate in aqueous sulphuric acid solution,; Chem. Phys. Lett. 1982. 88. 22. 8. D.A. Barrow, B.R. Lentz, Luminescence of calcium halophosphate-Sb3+,Mn2+ at low temperatures., Chem. Phys. Lett., 1984, 104,161-162. 9. Barrow, D. A.; Lentz, B. R., Quinine as a fluorescence lifetime standard: Conditions for effectively homogeneous decay., Chem Phys Let., 1984, 104, 163-167. 10. Eisenbrand, J.; Raisch, M. Z. Anal Chem1961, 179, 352 11. Pringsheim, P. Fluorescence and Phosphorescence; In-terscience: New York, 1949; p 328. 12. Pant, D.; Tripathi, U. C.; Joshi, G. C.; Tripathi, H. B.; Pant, D. D, Photophysics of doubly-charged quinine: Steady state and time-dependent fluorescence, J Photochem Photobiol–A., 1990, 51, 313. 13. Babko, A. K.; Kostyshina, A. P. Ukr Khim Zh 1969, 35, 837. 14. Jonathan H. Gutow, Halide (Cl-) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry, J. Chem. Edu., 2005, 82, 2, 302-305. 15. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang , Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun., 2001, 1740–1741. 16. P. L. Nostro, J. R. Lopes and C. Cardelli, Formation of Cyclodextrin-Based Polypseudorotaxanes: Solvent Effect and Kinetic Study, Langmuir., 2001, 17, 4610–4615. 17. Y. Hong, J.W.Y. Lam and B. Z. Tang, Aggregation-induced emission, Chem. Soc. Rev. 2011, 40, 5361–5388. 18. A.J. Qin, J.W.Y. Lam and B. Z. Tang, Luminogenic polymers with aggregation-induced emission characteristics, Prog. Polym. Sci., 2012, 37, 182–209. 19. J. Z. Liu, J. W. Y. Lam and B. Z. Tang, Aggregation-induced Emission of Silole Molecules and Polymers: Fundamental and Applications, J. Inorg. Organomet. Polym., 2009, 19, 249–285. 20. Y. Hong, J. W. Y. Lam and B. Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications, Chem. Commun., 2009, 4332–4353. 21. D.C. Carter, J.X. Ho, Structure of Serum Albumin, Adv. Protein Chem., 1994, 45, 153–203. 22. R.E. Olson, D.D. Christ, Chapter 33. Plasma Protein Binding of Drugs, Ann. Rep. Med. Chem., 1996, 31, 327– 337. 23. Y. Moriyama, D. Ohta, K. Hadiya, Y. Mitsui and K. Takeda, Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: A comparative study of the two and one tryptophan(s) of bovine and human albumins, J. Protein Chem., 1996, 15, 265–272. 24. A. Samanta, B. K. Paul, N. Guchhait, Novel proton transfer fluorescence probe 2-hydroxy-pyridine and 5-(4-fluorophenyl)-2-hydroxypyridine for studying native, denatured and renatured state of protein Bovine Serum Albumin, J. Photoch. Photobio. B., 2010, 101, 304–312. 25. G. Chen and M. Jiang, Cyclodextrin-based inclusion complexation bridging supramolecularchemistry and macromolecular self-assembly, Chem. Soc. Rev., 2011, 40, 2254–2266. 26. Y. Z. Zhang, B. Zhou, X. P. Zhang, P. Huang, C. H. Li and Y. Liu, Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods, J. Hazard. Mater., 2009, 163, 1345–1352. 27. M.R. Majidi, L.A.P. Kane-Maguire, G.G. Wallace, Enantioselective electropolymerization of aniline in the presence of (+)- or (−)-camphorsulfonate ion: a facile route to conducting polymers with preferred one-screw-sense helicity, Polymer., 1994, 35, 3113-3115. 28. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future, Adv. Mater., 2000,12,481-494. 29. A.P. Monkman, M. Halim, I.D.W. Samuel, L.E. Horburgh, Protonation effects on the photophysical properties of poly(2,5-pyridine diyl), J. Chem. Phys., 1998, 109, 10372-10378. 30. J.M. Hancock, S.A. Jenekhe, Unusual Protonation-Induced Continuous Tunability of Optical Properties and Electroluminescence of a π-Conjugated Heterocyclic Oligomer , Macromolecules., 2008, 41, 6864-6867. 31. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970. 32. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater., 2003, 15, 1535. 33. T. Lai, R. H. Chien, S. W. Kuo and J. L. Hong, etraphenylthiophene-Functionalized Poly(N-isopropylacrylamide): Probing LCST with Aggregation-Induced Emission, Macromolecules., 2011, 44, 6546-6556. 34. C. M. Yang, Y. W. Lai, S. W. Kuo and J. L. Hong, Complexation of Fluorescent Tetraphenylthiophene-Derived Ammonium Chloride to Poly(N-isopropylacrylamide) with Sulfonate Terminal: Aggregation-Induced Emission, Critical Micelle Concentration, and Lower Critical Solution Temperature, Langmuir., 2012, 28, 15725. 35. Y. Moriyama, D. Ohta, K. Hadiya, Y. Mitsui and K. J. Takeda, Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: A comparative study of the two and one tryptophan(s) of bovine and human albumins, J.Protein Chem., 1996, 15, 265-272. 36. X. M. He and D. C. Carter, Atomic structure and chemistry of human serum albumin, Nature., 1992, 358, 209-215. 37. Y. Z. Zhang, B. Zhou, X. P. Zhang, P. Huang, C. H. Li and Y. Liu, Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods, J. Hazard. Mater., 2009, 163, 1345-1352. 38. C. Tanford, K. Kawahara and S. Lapanje, Proteins as Random Coils. I. Intrinsic Viscosities and Sedimentation Coefficients in Concentrated Guanidine Hydrochloride, J. Amer. Chem. Soc., 1967, 89, 729-736. 39. J. C. Lee and S. N. Timasheff, Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride ,Biochemistry, 1974, 13, 257-265. 40. S. De, A. Girigoswami, S. Das, Fluorescence probing of albumin–surfactant interaction , J. Colloid. Interface Sci., 2005, 285, 562-273. 41. D. Kelley and D. J. McClements, Interactions of bovine serum albumin with ionic surfactants in aqueous solutions, Food Hydrocolloids., 2003, 17, 73-85. 42. S. L. Deng, T. S. Hsiao, K. Y. Shih and J. L. Hong, Protein quantitation by complexation of fluorescent tetraphenylthiophene cation to anion-terminated poly(N-isopropylacrylamide): Aggregation-enhanced emission and electrostatic interaction, J. Photochem. Photobio. B: Biology., 2014, 138, 134-140. 43. T. Singh, P. Bharmoria, M. Morikawa, N. Kimizuka and A. Kumar, Ionic Liquids Induced Structural Changes of Bovine Serum Albumin in Aqueous Media: A Detailed Physicochemical and Spectroscopic Study, J. Phys. Chem. B., 2012, 116, 11924-11935. 44. S. M. Yarmoluk, D. V. Kryvorotenko, A. O. Balanda, M. Y. Losytskyy and V. B. Kovalska, Proteins and cyanine dyes. Part III. Synthesis and spectroscopic studies of benzothiazolo-4-[1,2,6-trimethylpyridinium] monomethine cyanine dyes for fluorescent detection of bovine serum albumin in solutions, Dyes Pigm., 2001, 51, 41-49. 45. M. K. Santra, A. Banerjee, S. S. Krishnakumar, O. Rahaman and D. Panda, Multiple-probe analysis of folding and unfolding pathways of human serum albumin. Evidence for a framework mechanism of folding, Eur. J. Biochem., 2004, 271, 1789-1797. 46. R. B. Singh, S. Mahanta, A. Bagchi and N Guchhait, Interaction of human serum albumin with charge transfer probe ethyl ester of N,N-dimethylamino naphthyl acrylic acid: An extrinsic fluorescence probe for studying protein micro-environment, Photochem. Photobiol. Sci., 2009, 8, 101-110. 47. H. Jun, Y. H. Soo, S. Y. Seung, C. Kang and M. Suh, Fluorescent Hydrophobic Probes Based on Intramolecular Charge Transfer State for Sensitive Protein Detection in Solution , Chem. Lett., 2004, 33, 690-691. 48. S. Gorinstein, I. Goshev, S. Moncheva, M. Zemser, M. Weisz, A. Caspi, I. Libman, H. T. Lerner, S. Trakhtenberg and O. J. Martin-Belloso, Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes, Protein Chem., 2000, 19, 637-642. 49. Y. Hong, C. Feng, Y. Yu, J. Liu, J. W. Y. Lam, K. Q. Luo and B. Z. Tang, Quantitation, Visualization, and Monitoring of Conformational Transitions of Human Serum Albumin by a Tetraphenylethene Derivative with Aggregation-Induced Emission Characteristics, Anal. Chem., 2010, 82, 7035-7043. 50. P. J. Rossky, Protein denaturation by urea: slash and bond, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 16825-16826. 2.5. References 1. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang , Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun., 2001, 1740–1741. 2. B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, Efficient blue emission from siloles, J. Mater. Chem., 2001, 11, 2974-2978. 3. Y. Hong, J. W. Y. Lam and B. Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications, Chem. Commun., 2009, 4332-4353. 4. D. Ding, K. Li, B. Liu and B. Z. Tang, Bioprobes Based on AIE Fluorogens, Acc. Chem. Res., 2013, 46, 2441-2453. 5. Z. Zhao, J. W. Y. Lam and B. Z. Tang, Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes, J. Mater. Chem., 2012, 22, 23726-23740. 6. M. Wang, G. Zhang, D. Zhang, D. Zhu and B. Z. Tang, Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature, J. Mater. Chem., 2010, 20, 1858-1867. 7. Z. Zhao, J. W. Y. Lam and B. Z. Tang, Self-assembly of organic luminophores with gelation-enhanced emission characteristics, Soft Matter, 2013, 9, 4564-4579. 8. J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts, Adv. Mater., 2014, 26, 5429-5479. 9. H. Wang, E. Zhao, J. W. Y. Lam and B. Z. Tang, AIE luminogens: emission brightened by aggregation, Mater. Today, 2015, 18, 365-377. 10. Z. Li, Y. Dong, B. Mi, Y. Tang, M. Häussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, L. D. Williams, H. S. Kwok and B. Z. Tang, Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials, J. Phys. Chem. B., 2005, 109, 10061-10066. 11. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater., 2003, 15, 1535-1546. 12. J. L. Hong, Chap. 13 Enhanced Emission by Restriction of Molecular Rotation, in Aggregation-Induced Emission: Fundamentals, ed. A. Qin and B. Z. Tang, John Wiley & Sons, Ltd, NY, 2013. 13. C. A. Chou, R. H. Chien, C. T. Lai, J. L. Hong, Complexation of bulky camphorsulfonic acid to enhance emission of organic and polymeric fluorophores with inherent quinoline moiety, Chem. Phy. Lett., 2010, 501, 80–86. 14. P. Y. Huang, J. Y. Gao, C. Y. Song and J. L. Hong, Multiple-responsive ionic complex luminogen of quinine and camphorsulfonic acid with aggregation-induced emission, RSC Adv., 2016, 6, 38201-38205. 15. M. Sameiro and T. Goncalves, Fluorescent Labeling of Biomolecules with Organic Probes, Chem. Rev., 2009, 109, 190-212. 16. M. C. Gutierrez, M. J. Hortiguela, M. L. Ferrer and F. delMonte, Highly Fluorescent Rhodamine B Nanoparticles Entrapped in Hybrid Glasses, Langmuir, 2007, 23, 2175-2179. 17. F. Stracke, M. Heupel and E. Thiel, Singlet molecular oxygen photosensitized by Rhodamine dyes: correlation with photophysical properties of the sensitizers, J. Photochem. Photobiol., A, 1999, 126, 51-58. 18. O. Valdes-Aguilera and D. C. Neckers, Aggregation phenomena in xanthene dyes, Acc. Chem. Res., 1989, 22, 171-177. 19. M. Faraggi, P. Peretz, I. Rosenthal and D. Weinraub, Solution properties of dye lasers. Rhodamine B in alcohols, Chem. Phys. Lett., 1984, 103, 310. 20. J. Bujdak and N. Iyi, Molecular Aggregation of Rhodamine Dyes in Dispersions of Layered Silicates: Influence of Dye Molecular Structure and Silicate Properties, J. Phys. Chem. B, 2006, 110, 2180-2186. 21. R. Sasai, N. Iyi, T. Fujita, F. L. Arbeloa, V. M. Martinez, K. Takagi and H. Itoh, Luminescence Properties of Rhodamine 6G Intercalated in Surfactant/Clay Hybrid Thin Solid Films, Langmuir, 2004, 20, 4715-4719. 22. S. Dare-Doyen, D. Doizi, P. Guilbaud, F. Djedaini-Pilard, B. Perly and P. Millie, Dimerization of Xanthene Dyes in Water: Experimental Studies and Molecular Dynamic Simulations, J. Phys. Chem. B, 2003, 107, 13803-13812. 23. S. Kamino, Y. Horio, S. Komeda, K. Minoura, H. Ichikawa, J. Horigome, A. Tatsumi, S. Kaji, T. Yamaguchi, Y. Usami, S. Hirota, S. Enomoto, Y. Fujita, A new class of rhodamine luminophores: design, syntheses and aggregation-induced emission enhancement, Chem. Commun., 2010, 46 , 9013-9015. 24. V. B. Bojinov, A. I. Venkova, N. I. Georgiev, Synthesis and energy-transfer properties of fluorescence sensing bichromophoric system based on Rhodamine 6G and 1,8-naphthalimide, Sensors and Actuators B, 2009, 143, 42-49. 25. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater., 2003, 15, 1535-1546. 26. C. T. Lai, R. H. Chien, S. W. Kuo and J. L. Hong, Tetraphenylthiophene-Functionalized Poly(N-isopropylacrylamide): Probing LCST with Aggregation-Induced Emission, Macromolecules, 2011, 44, 6546-6556. 27. C. M. Yang, Y. W. Lai, S. W. Kuo and J. L. Hong, Complexation of Fluorescent Tetraphenylthiophene-Derived Ammonium Chloride to Poly(N-isopropylacrylamide) with Sulfonate Terminal: Aggregation-Induced Emission, Critical Micelle Concentration, and Lower Critical Solution Temperature, Langmuir, 2012, 28, 15725. 28. Y. Z. Zhang, B. Zhou, X. P. Zhang, P. Huang, C. H. Li and Y. Liu, Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods, J. Hazard. Mater., 2009, 163, 1345-1352. 29. R. F. Greene, Jr., C. N. Pace, Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin., J. Biological Chem., 1974, 249, 5388-5393. 30. O. D. Monera, C. M. Kay, R. S. Hodges, Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions, Protein Sci., 1994, 3, 1984-1991. 31. S. M. Yarmoluk, D. V. Kryvorotenko, A. O. Balanda, M. Y. Losytskyy and V. B. Kovalska, Proteins and cyanine dyes. Part III. Synthesis and spectroscopic studies of benzothiazolo-4-[1,2,6-trimethylpyridinium] monomethine cyanine dyes for fluorescent detection of bovine serum albumin in solutions, Dyes Pigm., 2001, 51, 41-49. 32. M. K. Santra, A. Banerjee, S. S. Krishnakumar, O. Rahaman and D. Panda, Multiple-probe analysis of folding and unfolding pathways of human serum albumin. Evidence for a framework mechanism of folding, Eur. J. Biochem., 2004, 271, 1789-1797. 33. R. B. Singh, S. Mahanta, A. Bagchi and N. Guchhait, Interaction of human serum albumin with charge transfer probe ethyl ester of N,N-dimethylamino naphthyl acrylic acid: An extrinsic fluorescence probe for studying protein micro-environment, Photochem. Photobiol. Sci., 2009, 8, 101-110. 34. H. Jun, Y. H. Soo, S. Y. Seung, C. Kang and M. Suh, Fluorescent Hydrophobic Probes Based on Intramolecular Charge Transfer State for Sensitive Protein Detection in Solution, Chem. Lett, 2004, 33, 690-691. 35. S. Gorinstein, I. Goshev, S. Moncheva, M. Zemser, M. Weisz, A. Caspi, I. Libman, H. T. Lerner, S. Trakhtenberg and O. J. Martin-Belloso, Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes, J. Protein. Chem., 2000, 19, 637-642. 36. Y. Hong, C. Feng, Y. Yu, J. Liu, J. W. Y. Lam, K. Q. Luo and B. Z. Tang, Quantitation, Visualization, and Monitoring of Conformational Transitions of Human Serum Albumin by a Tetraphenylethene Derivative with Aggregation-Induced Emission Characteristics, Anal. Chem., 2010, 82, 7035-7043.
|