跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周少文
研究生(外文):Chou, Shao-Wen
論文名稱:改良型Kaczmarz演算法應用於單頻精密單點定位
論文名稱(外文):A Modified Kaczmarz Algorithm for Single-Frequency PPP
指導教授:王和盛
指導教授(外文):Wang, He-Sheng
口試委員:張帆人王立昇卓大靖王和盛
口試委員(外文):Chang, Fan-RenWang, Li-ShengJwo, Dah-JingWang, He-Sheng
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:40
中文關鍵詞:單頻接收機精密單點定位Kaczmarz演算法改良型Kaczmarz演算法
外文關鍵詞:Single-Frequency ReceiverPrecise Point PositioningKaczmarz AlgorithmModified Kaczmarz Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
傳統上衛星定位主要是使用最小平方法(Least Squares),而使用者若是持有單頻接收機,則常結合精密單點定位(Precise Point Positioning, PPP)去提升定位精確度,本篇論文提出一種改良型Kaczmarz演算法(Modified Kaczmarz Algorithm)取代最小平方法,希望能夠更加提升PPP定位方法的精確度。Kaczmarz演算法是用來計算線性方程式的解的一種方法,但由於無法確定收斂速度,所以又發展出了隨機性Kaczmarz演算法(Randomized Kaczmarz Algorithm),但隨機性Kaczmarz演算法的定位結果卻不如傳統上使用的最小平方法(Least Squares),所以本篇論文改良了Kaczmarz演算法,使其定位精度相較於最小平方法,在定位誤差上有更好的效果。
For the GNSS receivers, usually the least-squares algorithm is used in positioning. In this paper, a modified Kaczmarz algorithm is proposed for single-frequency Precise Point Positioning (PPP) to improve positioning accuracy. Originally, Kaczmarz algorithm is a method which could be used to find the solution of a linear equations systems. When applying the traditional Kaczmarz algorithm in PPP, we find the results are not satisfactory. Therefore, we offer a modified Kaczmarz algorithm to improve the positioning accuracy. From the results of the experiments, the proposed method indeed outperform the least-squares and the traditional Kazmarz algorithms.
摘要……………………………………………………………………………………I
Abstract………………………………………………………………………II
目次…………………………………………………………………………………III
圖次…………………………………………………………………………………IV
表次…………………………………………………………………………………V
第一章 緒論……………………………………………………………1
1.1 前言……………………………………………………………………1
1.2 研究背景與動機………………………………………………1
1.3全球定位系統…………………………………………………………2
1.4本文架構…………………………………………………………………2
第二章 精密單點定位…………………………………………3
2.1 觀測量…………………………………………………………………3
2.2定位原理…………………………………………………………………4
2.3 觀測量誤差項…………………………………………………………6
2.3.1 衛星軌道誤差………………………………………………6
2.3.2 時鐘誤差……………………………………………………………7
2.3.3 電離層延遲…………………………………………………………7
2.3.4 對流層延遲…………………………………………………………9
2.3.5 相對論誤差………………………………………………………13
2.3.6 其餘誤差項………………………………………………………14
第三章 Kaczmarz演算法及改良………………………………16
3.1 Kaczmarz演算法………………………………………………………16
3.2 隨機性Kaczmarz演算法……………………………………………17
3.3 改良型Kaczmarz演算法……………………………………………21
第四章 實驗結果與分析…………………………………………………24
4.1 實驗環境與設備………………………………………………………24
4.2 實驗流程與設計………………………………………………………27
4.3 實驗結果………………………………………………………………28
第五章 結論與未來展望………………………………………38
5.1 結論……………………………………………………………………38
5.2 未來展望………………………………………………………………38
參考文獻……………………………………………………………………………39
[1] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more: Springer, 2007.
[2] P. Misra, P. Enge, Global Positoning System: Signal, Measurements and Performance Second Edition, Ganga-Jamuna Press, 2006.
[3] A. Rietdof, C. Daub and P. Loef, Precise Positioning in Real-Time using Navigation Satellites and Telecommunication, Proceedings of the 3rd Workshop on Positioning, Navigation and Communication, Mar. 2006.
[4] K. Huber, F. Heuberger, C. Abart, A. Karabatic, R. Weber, P. Berglez, PPP:Precise Point Positioning-Constraints and Opportunities, 2010.
[5] S. Bisnath, Y. Gao, Precise Point Positioning-A Powerful Technique with a Promising Future, 2009.
[6] International GNSS Service (IGS),products.(http://www.igs.org/products)
[7] Langley, R.B, “The Effect of the Ionosphere and Troposphere on Satellite Positioning Systems.” Proceedings of Symposium on Refraction of Transatmospheric Signals in Geodesy, J.C de Munck, and T.A. Spoelstra (Eds.) Netherlands Geodetic Commission, Publications on Geodesy, New Series No.36, p.97 The hague, The Netherlands, 19-22 May, 1992.
[8] Leandro R.F., M.C. Santos, and R.B Langley, “UNB Neutral Atmosphere Models: National Technical Meeting of TheInstitue of Navigation, Monterey, California, pp. 564-573, January, 2006.
[9] M. Bevis and al., GPS Meteorology: Mapping Zenith Delay onto Precipitable Water,” American Meteorological Society, vol. 33, pp 379-386, 1994.
[10] NIELL, A.E., Global mapping functions for the atmosphere delay at radio wavelengths”, Journal of Geophysical Research, Volume 101, No B2, pp. 3227-
3246, 1996.
[11] N. Ashby, J.J Spilker Jr, Introduction to Relativity Effects on the Global Positioning System, Global Position System: Theory and Applications Volume II,
Progress in Astronautics and Aeronautics, Volume 163, American Institute of Aeronautics and Astronautics, Inc., 1996.
[12] Kouba, J. and Heroux, GPS Precise Point Positioning using IGS Orbit Products. Geodetic Survey Division, Natural Resources Canada, 2000.
[13] S. Kaczmarz, “Angenäherte auflösung von systemen linearer gleichungen”,
Bull. Internat. A cad. Polon. Sci. Lettres A, pp. 335-357, 1937.
[14] Thomas Strohmer and Roman Vershynin, A randomized Kaczmarz algorithm with exponential convergence, Journal of Fourier Analysis and Applications, 2009.
[15] L. Dai, M. Soltanalian and K. Pelckmans, “On the randomized Kaczmarz algorithm” , vol. 21, no. 3, pp. 330-333, Mar., 2014.
[16] Deanna Needell, “Randomized Kaczmarz solver for noisy linear systems”, BIT Numerical Mathematics, vol 50, pp. 395-403, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top