跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王艶茹
研究生(外文):WANG, YAN-RU
論文名稱:低碳鋼材J型槽銲之GMAW銲接應力與應變分析
論文名稱(外文):The Stress and Strain Analyses of J-Groove Welding on Low-carbon Steel for Gas Metal Arc Welding (GMAW)
指導教授:康耀鴻
指導教授(外文):Kang, YAW-HONG
口試委員:康耀鴻許兆民黃世疇林阿德洪宗彬
口試委員(外文):Kang, YAW-HONGHsu, CHAO-MINGHUANG, SHYH-CHOURLINE, AH-DERHUNG, TSUNG-PIN
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:GMAWJ型槽銲殘留應力銲後變形量
外文關鍵詞:GMAWJ-grooveresidual stresspost-welding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
本研究係利用MSC.MARC軟體,模擬分析J型槽銲進行氣體金屬極電弧銲接(Gas Metal Arc Welding, GMAW)過程,因銲接熱傳導造成鋼鈑末端偏移、翹曲、及銲道處的殘餘應力與變形量。模擬銲接材料為10mm厚的低碳鋼鈑,模擬J型槽銲鈑件及銲接參數,則參考AWS之試件規範建模,銲接熱源則採用高斯雙橢球熱源。本文針對四項不同的銲接影響因素,進行J型槽銲的GMAW實驗模擬分析,並觀察分析其溫度場、鈑末端偏移量和殘留應力與應變的變化。第一項是針對三種不同銲道形貌的J型槽銲做模擬實驗分析。第二項是針對不同的散熱係數(50~250W/m2K)進行模擬實驗分析。第三項是針對不同的銲接有效吸收率(0.4~0.8)進行模擬實驗分析。第四項是針對四種不同順序的銲道進行模擬實驗分析。由本文各種模擬實驗,分析其鋼鈑末端偏移量、翹曲程度、銲縫處的殘餘應力及變形量等數據所得結果,可預測實際J型槽銲進行GMAW銲接時,其鋼鈑末端的偏移量、翹曲以及銲道之殘餘應力、變形量等。
In this study, MSC.MARC software was used to perform simulation analyses on J -groove during gas metal arc welding (GMAW) process which can cause deviation at steel plate end, warping, and residual stress and distortion of welding bead due to welding heat conduction. The simulated welding material used was a 10mm thick low-carbon steel plate, The simulated J-groove models were referred to AWS specimen-specific and GWAW parameters, and Gaussian double ellipsoid heat source was adopted as the welding heat source. Based on four different welding influencing factors, experimental GMAW simulation analyses were done on J-groove by this paper, and its temperature field, deviation amount at steel plate end, and the changes in residual stress and strain were observed and analyzed. The first experimental simulation analyses were done on three different welding bead appearances of J-groove. The second experimental simulation analyses were done on different heat dissipation coefficients (50~250W/m2K). The third experimental simulation analyses were done on the effective welding absorption rates (0.4~0.8) of different welding methods. The fourth experimental simulation analyses were done on four different orders of welding beads. From different simulation experiments done by this paper, the data obtained from deviation amount at steel plate end, warping extent, residual stress and distortion amount of welding seam, etc. can be used to predict the actual deviation amount at steel plate end, warping, residual stress of welding bead and distortion amount, etc. while performing J-groove welding with GMAW.
目 錄
摘 要 i
ABSTRACT ii
致 謝 iii
目 錄 iv
表目錄 v
圖目錄 vi
符號說明 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3 研究流程 7
1.4 文獻回顧 9
1.5 組織章節 11
第二章 理論與研究方法 12
2.1 數值理論 12
2.1.1 Surface Evolver理論 12
2.1.2 銲接熱源理論 13
2.1.3 銲接熱固耦合分析理論 14
2.1.4 銲接的熱彈塑性基礎分析理論 15
2.1.5 熱傳的分析理論 15
2.1.6 溫度場的分析理論 16
2.2 數值MARC分析 18
2.2.1 建立銲接試件 18
2.2.2 設定邊界條件 23
2.2.3 設定網格、材質之熱物理性質 23
第三章 不同銲接因素對GMAW銲接應力與應變影響 26
3.1 不同銲道形貌對應變和變形量的影響 26
3.2 不同散熱係數對變形量的影響 34
3.3 不同銲接吸收率對溫度與變形量的影響 40
3.4 四種銲接順序對銲接應力與變形量的影響 47
第四章 結論與建議 56
4.1 結論 56
4.2 建議 57
參考文獻 58
[1]C. R. Riparbelli, 1950, A method for the determinination of critical stress, Proc. SESA VIII(1):173-196.

[2]C. C. Huang, Y. C. Pan and T. H. Chuang, 1997, “Effects of post weld heat treatments on the residual stress and mechanical properties of electron beam welded SAE 4130 steel plates,” Journal of Material Engineering Performance, Vol.6, pp. 61-68.

[3]T. L. Teng and C. C. Lin, 1998, “Effect of welding conditions on residual stresses due to butt welds,” International Journal of Pressure Vessels and Piping,Vol.75, pp.857-864.

[4]Y. X. Gao, H. Fan and Z. Xiao, 2000, “A thermondynamics model for solder profile evolution,” Acta Materialian, Vol.48, pp. 863-874.

[5]W. H. John. Price, A. M. Ziara-Paardowska, S. Joshi, T. R. Finlayson, C. Semetay and H. Nied, 2007, “Cotresses in mparison of experimental and theoretical residual sweld: The issue of gauge volume,” International Journal of Mechanical Sciences,Vol.50, pp.513-521.

[6]Y. Ueda, H. Murakawa and N. Ma, 2012, Welding Deformation and Residual
Stress Prevention, Waltham, MA: Butterworth-Heinemann,USA.

[7]R. Blish, Sidharth and D. Natekar, 2002, “Solder Joint Shape and Standoff Height Prediction and Integration with FEA-based methodology for reliability evaluation,” Proceedings of 52nd Conference Electronic Components and Technology, 28-31 May, San Diego, CA, USA.

[8]W. Drenckhan, S. Hutzler, 2015, ”Structure and energy of liquid foams,” Advances in Colloid and Interface Science, Vol.224, pp.1-16.

[9]周志賢,熱處理殘餘應力之分析,碩士論文,國立交通大學機械工程研究所,民國72年。

[10]陳東陽,金屬複合材料的熱殘餘應力,國科會計畫報告,民國83年。

[11]G. W. Krutz and L. J. Segerlind, 1978, “Finite element analysis of welded structures,” Welding Research Supplement, July, pp. 211-216.

[12] J. Goldak, A. Chakravarti and M. Bibby, 1984, “A new finite element model for welding heat sources,” Metallurgical and Materials Transactions, B-process Metallurgy and Materials Processing Science, Vol.15, pp. 299-305.

[13]MSC Software, 2013, Thermal Mechanically Coupled Analysis In Volume A:
Theory and User Information, Newport Beach, CA, pp. 341-342.

[14]D. L. Logan, 2007, “A first Course in the finite element method,” Thomson, pp. 618-646, Toronto, Canada.

[15]R. Blondeau, 2008, Metallurgy and Mechanics of Welding Processes and Industrial Applications. New York City: John Wiley & Sons, pp.89-131

[16]Q. C. Yang, P. Zhang, C. Lin, M. Zheng, M. Chyu and C. Albert, 2016, “Finite element modeling and validation of thermomechanicalbehavior of Ti-6Al-4V in directed energy deposition additive manufacturing,” Additive Manufacturing, Vol.12, pp.169-177.

[17]M. Islam, A. Buijk, M. Rais-Rohani and K. Motoyama, 2014, “Simulation-based numerical optimization of arc welding process for reduced distortion in wel1ded structures,” Finite Elements in Analysis and Design, Vol. 84 , pp. 54-64.

[18]C. F. FANG, X. H. Meng, Q. X. HU, F. J. Wang, H. Ren, H. S. Wang, Y. Guo and M. Mao, 2012, “TANDEM and GMAW twin wire welding of Q690 steel used in hydraulic support,” Journal of Iron Steel Research, Internationl, Vol.19, pp.79-85.

[19]D. J. Ye, X. M. Hua, J. Zhang, Y. Bai and Y. P. Lv, 2015, “Analysis of arc interference and welding stability in twin wire GMA welding,” International Journal of Advanced Manufacturing Technology, Vol.81, pp.627–633.

[20]X. Ding, H. Li, L. Yang and Y. Gao , 2013, “Numerical simulation of metal transfer process in tandem GMAW,” International Journal of Advanced Manufacture Technology, Vol.69, pp.107-112.

[21]Z. Cao, Z. Yang and X. L. Chen, 2004, “Three-dimensional simulation of
transient GMA weld pool with free surface,” Weld Journal, June, pp.169-176.

[22]C. Jorge , T. Edna and A. A., Sadek, 2015, “A methodology for modeling and
control of weld bead width in the GMAW process,” Journal of the Brazilian
Society of Mechanical Sciences and Engineering, Vol.37, Sept. pp.1529-1541.

[23]D. Wu, X. Hua, D. Ye, X. Ma and F. Li, 2017, “Understanding of the weld pool convection in twin-wire GMAW process,” International Journal of Advanced Manufacture Technology, Vol.88, pp.219-227.

[24]M. A. Moghaddam, R.Golmezergi and F. Kolahan, 2016, “Multi-variable measurements and optimization of GMAW parameters for API-X42 steel alloy using a hybrid BPNN-PSO approach,” Measurement, Vol.92, Oct. pp.279-287.

[25]H. L.Wei, H. Li, Y. Gao, X. P. Ding and L. J. Yang, 2015, “Welding process of consumable double electrode with a single arc GMAW,” Internal Journal of Advanced Manufacture Technology, Vol.76, pp.435-446.

[26]I. Polajnar, J. Prezelj, Z. Bergant and J. Grum, 2014, “Mathematical modelling of GMAW process using sound pressure measurements,” International Journal of Microstructure and Materials Properties, Vol.9, Issue 3-5, pp. 374-388.

[27]Q.H. Dai, P. Ji, C. B. Yin, D. S. Yi, D. Wu and D. Y. Zhang, 2011, “The influence of welding sequence for residual stress on T-type of excavator platform,” Manufacture Information Engineering of China.Vol.40, no.7, pp.34-37.

[28]S. M. Wu, 2010, “Effect of diamond-like carbon coating on welding residual stress of titanium bearing low carbon high strength steel,” National Taiwan Ocean University, Mster Thesis of the Department of Mechanical and Mechatronic Engineering.

[29]W. Kim, K. S. Kim, H. Lee, K. Yoo, 2016, “Welding residual stress analysis of 347H austenitic stainless steel boiler tubes using experimental and numerical approaches,” Journal of Mechanical Science and Technology, Vol.30, pp.1773-1779.

[30]P. Jeong-Ung, A. Gyubaek and W. Wanchuck, 2017, “The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding,” International Journal of Naval Architecture and Ocean Engineering.

[31]K. Shoichi, D. Dean, O. Kazuo, Y. Nobuyoshi and S. Koichi, 2009, “Influences of heat source model on welding residual stress and distortion in a multi-pass J-groove joint,” Computational Materials Science, Vol.46, pp.987-995.

[32]D. Dean ,2013, “Influence of deposition sequence on welding residual stress and deformation in an austenitic stainless steel J-groove welded joint,” Materials and Design, Vol.49, pp.1022-1033.

[33]G. Zhang, C. Zhou, Z. Wang, F. Xue, Y. Zhao, L. Zhang, Lu and Y. Liu, 2012, “Numerical simulation of creep damage for low alloy steel welded joint considering as-welding residual stress,” Nuclear Engineering and Design, Vol.242, pp.26-33.

[34]S. Y. Hwang, J. H. Lee and S. C. Kim, 2012, “Numerical simulation of welding residual stress distribution on T-joint fillet structure,” International Journal of Ocean System Engineering, Vol.2, pp.82-91.

[35]M. Xu, J. Chen, Y. Jin, Y. Li and H. Lu, 2015, “Effects of weld metal strength and transformation temperature on welding residual stress,” Science and Technology of Welding and Joining, Vol.20, pp.208-215.

[36]D. Dean ,2013, “Influence of deposition sequence on welding residual stress and deformation in an austenitic stainless steel J-groove welded joint,” Materials and Design, Vol.49, pp.1022-1033.

[37]C Liu, Y. Luo, M. Yang and Q. Fu, 2016, “Effects of material hardening model and lumped-pass method on welding residual stress simulation of J-groove weld in nuclear RPV,” Engineering Computations, Vol. 33, pp.1435-1450.

[38]I. Izzatul Aini, M. Syarul Asraf, A. Amalina and G. Abdul, 2012, “The effect of
gas metal arc welding (GMAW) processes on different welding parameters,” Procedia Engineering, Vol.41, pp.1502-1506.

[39]T. Schenk, I. M. Richardson, M. Kraska, and S. Ohnimus, 2009, “A study on the influence of clamping on welding distortion,” Computational Materials Science, Vol.45, pp. 999-1005.

[40]鄭岩,MARC 2001從入門到精通,中國水利水電出版社,2003。

[41]郭海鵠,304不鏽鋼銲後殘餘應力之研究,國科會專題研究計畫報告,民國75 年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top