[1]C. R. Riparbelli, 1950, A method for the determinination of critical stress, Proc. SESA VIII(1):173-196.
[2]C. C. Huang, Y. C. Pan and T. H. Chuang, 1997, “Effects of post weld heat treatments on the residual stress and mechanical properties of electron beam welded SAE 4130 steel plates,” Journal of Material Engineering Performance, Vol.6, pp. 61-68.
[3]T. L. Teng and C. C. Lin, 1998, “Effect of welding conditions on residual stresses due to butt welds,” International Journal of Pressure Vessels and Piping,Vol.75, pp.857-864.
[4]Y. X. Gao, H. Fan and Z. Xiao, 2000, “A thermondynamics model for solder profile evolution,” Acta Materialian, Vol.48, pp. 863-874.
[5]W. H. John. Price, A. M. Ziara-Paardowska, S. Joshi, T. R. Finlayson, C. Semetay and H. Nied, 2007, “Cotresses in mparison of experimental and theoretical residual sweld: The issue of gauge volume,” International Journal of Mechanical Sciences,Vol.50, pp.513-521.
[6]Y. Ueda, H. Murakawa and N. Ma, 2012, Welding Deformation and Residual
Stress Prevention, Waltham, MA: Butterworth-Heinemann,USA.
[7]R. Blish, Sidharth and D. Natekar, 2002, “Solder Joint Shape and Standoff Height Prediction and Integration with FEA-based methodology for reliability evaluation,” Proceedings of 52nd Conference Electronic Components and Technology, 28-31 May, San Diego, CA, USA.
[8]W. Drenckhan, S. Hutzler, 2015, ”Structure and energy of liquid foams,” Advances in Colloid and Interface Science, Vol.224, pp.1-16.
[9]周志賢,熱處理殘餘應力之分析,碩士論文,國立交通大學機械工程研究所,民國72年。[10]陳東陽,金屬複合材料的熱殘餘應力,國科會計畫報告,民國83年。
[11]G. W. Krutz and L. J. Segerlind, 1978, “Finite element analysis of welded structures,” Welding Research Supplement, July, pp. 211-216.
[12] J. Goldak, A. Chakravarti and M. Bibby, 1984, “A new finite element model for welding heat sources,” Metallurgical and Materials Transactions, B-process Metallurgy and Materials Processing Science, Vol.15, pp. 299-305.
[13]MSC Software, 2013, Thermal Mechanically Coupled Analysis In Volume A:
Theory and User Information, Newport Beach, CA, pp. 341-342.
[14]D. L. Logan, 2007, “A first Course in the finite element method,” Thomson, pp. 618-646, Toronto, Canada.
[15]R. Blondeau, 2008, Metallurgy and Mechanics of Welding Processes and Industrial Applications. New York City: John Wiley & Sons, pp.89-131
[16]Q. C. Yang, P. Zhang, C. Lin, M. Zheng, M. Chyu and C. Albert, 2016, “Finite element modeling and validation of thermomechanicalbehavior of Ti-6Al-4V in directed energy deposition additive manufacturing,” Additive Manufacturing, Vol.12, pp.169-177.
[17]M. Islam, A. Buijk, M. Rais-Rohani and K. Motoyama, 2014, “Simulation-based numerical optimization of arc welding process for reduced distortion in wel1ded structures,” Finite Elements in Analysis and Design, Vol. 84 , pp. 54-64.
[18]C. F. FANG, X. H. Meng, Q. X. HU, F. J. Wang, H. Ren, H. S. Wang, Y. Guo and M. Mao, 2012, “TANDEM and GMAW twin wire welding of Q690 steel used in hydraulic support,” Journal of Iron Steel Research, Internationl, Vol.19, pp.79-85.
[19]D. J. Ye, X. M. Hua, J. Zhang, Y. Bai and Y. P. Lv, 2015, “Analysis of arc interference and welding stability in twin wire GMA welding,” International Journal of Advanced Manufacturing Technology, Vol.81, pp.627–633.
[20]X. Ding, H. Li, L. Yang and Y. Gao , 2013, “Numerical simulation of metal transfer process in tandem GMAW,” International Journal of Advanced Manufacture Technology, Vol.69, pp.107-112.
[21]Z. Cao, Z. Yang and X. L. Chen, 2004, “Three-dimensional simulation of
transient GMA weld pool with free surface,” Weld Journal, June, pp.169-176.
[22]C. Jorge , T. Edna and A. A., Sadek, 2015, “A methodology for modeling and
control of weld bead width in the GMAW process,” Journal of the Brazilian
Society of Mechanical Sciences and Engineering, Vol.37, Sept. pp.1529-1541.
[23]D. Wu, X. Hua, D. Ye, X. Ma and F. Li, 2017, “Understanding of the weld pool convection in twin-wire GMAW process,” International Journal of Advanced Manufacture Technology, Vol.88, pp.219-227.
[24]M. A. Moghaddam, R.Golmezergi and F. Kolahan, 2016, “Multi-variable measurements and optimization of GMAW parameters for API-X42 steel alloy using a hybrid BPNN-PSO approach,” Measurement, Vol.92, Oct. pp.279-287.
[25]H. L.Wei, H. Li, Y. Gao, X. P. Ding and L. J. Yang, 2015, “Welding process of consumable double electrode with a single arc GMAW,” Internal Journal of Advanced Manufacture Technology, Vol.76, pp.435-446.
[26]I. Polajnar, J. Prezelj, Z. Bergant and J. Grum, 2014, “Mathematical modelling of GMAW process using sound pressure measurements,” International Journal of Microstructure and Materials Properties, Vol.9, Issue 3-5, pp. 374-388.
[27]Q.H. Dai, P. Ji, C. B. Yin, D. S. Yi, D. Wu and D. Y. Zhang, 2011, “The influence of welding sequence for residual stress on T-type of excavator platform,” Manufacture Information Engineering of China.Vol.40, no.7, pp.34-37.
[28]S. M. Wu, 2010, “Effect of diamond-like carbon coating on welding residual stress of titanium bearing low carbon high strength steel,” National Taiwan Ocean University, Mster Thesis of the Department of Mechanical and Mechatronic Engineering.
[29]W. Kim, K. S. Kim, H. Lee, K. Yoo, 2016, “Welding residual stress analysis of 347H austenitic stainless steel boiler tubes using experimental and numerical approaches,” Journal of Mechanical Science and Technology, Vol.30, pp.1773-1779.
[30]P. Jeong-Ung, A. Gyubaek and W. Wanchuck, 2017, “The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding,” International Journal of Naval Architecture and Ocean Engineering.
[31]K. Shoichi, D. Dean, O. Kazuo, Y. Nobuyoshi and S. Koichi, 2009, “Influences of heat source model on welding residual stress and distortion in a multi-pass J-groove joint,” Computational Materials Science, Vol.46, pp.987-995.
[32]D. Dean ,2013, “Influence of deposition sequence on welding residual stress and deformation in an austenitic stainless steel J-groove welded joint,” Materials and Design, Vol.49, pp.1022-1033.
[33]G. Zhang, C. Zhou, Z. Wang, F. Xue, Y. Zhao, L. Zhang, Lu and Y. Liu, 2012, “Numerical simulation of creep damage for low alloy steel welded joint considering as-welding residual stress,” Nuclear Engineering and Design, Vol.242, pp.26-33.
[34]S. Y. Hwang, J. H. Lee and S. C. Kim, 2012, “Numerical simulation of welding residual stress distribution on T-joint fillet structure,” International Journal of Ocean System Engineering, Vol.2, pp.82-91.
[35]M. Xu, J. Chen, Y. Jin, Y. Li and H. Lu, 2015, “Effects of weld metal strength and transformation temperature on welding residual stress,” Science and Technology of Welding and Joining, Vol.20, pp.208-215.
[36]D. Dean ,2013, “Influence of deposition sequence on welding residual stress and deformation in an austenitic stainless steel J-groove welded joint,” Materials and Design, Vol.49, pp.1022-1033.
[37]C Liu, Y. Luo, M. Yang and Q. Fu, 2016, “Effects of material hardening model and lumped-pass method on welding residual stress simulation of J-groove weld in nuclear RPV,” Engineering Computations, Vol. 33, pp.1435-1450.
[38]I. Izzatul Aini, M. Syarul Asraf, A. Amalina and G. Abdul, 2012, “The effect of
gas metal arc welding (GMAW) processes on different welding parameters,” Procedia Engineering, Vol.41, pp.1502-1506.
[39]T. Schenk, I. M. Richardson, M. Kraska, and S. Ohnimus, 2009, “A study on the influence of clamping on welding distortion,” Computational Materials Science, Vol.45, pp. 999-1005.
[40]鄭岩,MARC 2001從入門到精通,中國水利水電出版社,2003。
[41]郭海鵠,304不鏽鋼銲後殘餘應力之研究,國科會專題研究計畫報告,民國75 年。