跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.119) 您好!臺灣時間:2025/11/24 13:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張群
研究生(外文):Chun Chang
論文名稱:以氮化鎵功率晶體研製用於電磁爐之諧振轉換器
論文名稱(外文):Design and Implementation of a GaN-Based Resonant Converter for Induction Cooker
指導教授:黃明熙
口試委員:林法正賴炎生
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系電力電子產業研發碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:107
中文關鍵詞:氮化鎵功率晶體寬能隙半導體半橋LCLR半橋串聯諧振感應加熱電磁爐
外文關鍵詞:GaNWBG SemiconductorHalf-Bridge LCLR ConverterHalf-Bridge Series Resonant ConverterInduction HeatingInduction Cooker
相關次數:
  • 被引用被引用:5
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
感應加熱較傳統加熱擁有較高效率及高安全性,因此近年來感應加熱應用越來越廣泛,其中以電磁爐居多。傳統電磁爐的切換頻率約為20kHz至50kHz,但因切換頻率較低僅適用於鐵鍋等導磁材料之鍋具,對於非導磁材料之銅鍋及鋁鍋加熱效果有限。本論文是以半橋串聯諧振及半橋LCLR電路作為實現電磁爐電源轉換器之架構;首先,以GaN及MOSFET功率晶體分別建構半橋串聯諧振電路,切換頻率40kHz至50kHz及功率800W,對鐵鍋進行效率比較。隨後,研製GaN所建構之半橋LCLR電路,以200kHz切換頻率對銅鍋進行加熱特性探討。
另外,使用ANSYS Maxwell分析電磁爐之磁路分布,並針對不同切換頻率、氣隙及輸入電流,探討對電氣參數(自感、等效電阻及功率)之影響。為降低因GaN高速切換特性所造成dv/dt及di/dt問題,利用ANSYS Q3D Extractor軟體協助電路佈線,並以SIMetrix/SIMPLIS建構Spice模擬環境,分析雜散電感對電路切換行為之影響。
所提轉換器是以數位訊號處理器TI TMS320F28035做為控制核心,研製切換頻率40kHz及200kHz之電磁爐,並以實驗證明研製系統之正確性。
Since the induction heating provides both higher efficiency and more safety compared with traditional heating methods, induction heating are gradually used in wide-range fields wherein the induction cooker is the majority in recent years. The switching frequency of conventional induction cooker is operated from 20kHz to 50kHz. Due to the lower switching frequency, it is only applicable to the pots made by magnetic material, such as steel and iron. For the non-magnetic material making pots, like aluminum and copper, the effect of heating is by far not obviously. In this thesis, both half-bridge serial resonant converter and half-bridge LCLR converter are carried out to implement the induction cooker. Firstly, the half-bridge serial resonant converter with range from 40kHz to 50kHz and 800W is constructed by MOSFET and GaN separately to compare the efficiency on an stainless pot. After that, a LCLR half-bridge converter implemented by GaN with 200 kHz is used to investigate the heating characteristics of copper pot.
Moreover, the Maxwell 3D computer-aided design software is adopted to analysis the magnetic characteristics of induction cooker during heating and the effects of different switching frequency, air gap and current on the electrical parameters, such as self-inductance, equivalent resistance and effective power of pot and cooker’s winding. In order to reduce the troubles caused by higher dv/dt and di/dt which is generated by the turn-off transient of GaN, the Q3D Extractor software is used to assist PCB layout to reduce stray inductance of main power flow trace for reducing the voltage stress on GaN. Then, a circuit-level simulation environment based on Spice model of GaN was built to analysis the influence of the stray inductance on GaN during switching.
And finally, a converters with 1kW rated power and controlled by a digital signal processor TI TMS320F28035 is constructed and some experimental results are carried out to verify the correctness of proposed converter for induction cooker.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 用於電磁爐之感應加熱研究現況 7
1.2.1 導磁鍋具 7
1.2.2 非導磁鍋具 9
1.2.3 電磁場分析用於感應加熱 11
1.2.4. GaN用於電磁爐上相關研究 11
1.3 研究目的與方法 12
1.3.1 導磁鍋具 12
1.3.2 非導磁鍋具 13
1.4 論文架構 15
第二章 感應加熱原理 16
2.1 感應加熱原理 16
2.2 電磁爐等效電路 17
2.3 線圈於高頻下之效應 22
第三章 半橋串聯諧振轉換器研製 26
3.1 半橋串聯諧振轉換器電路特性 26
3.1.1 電路分析 26
3.2 半橋串聯諧振轉換器之硬體設計 28
3.2.1 GaN元件介紹 28
3.2.2 半橋電路設計 32
3.2.3 諧振槽電路設計 40
3.3 半橋串聯諧振轉換器之控制架構 46
3.3.1 數位訊號處理器介紹 46
3.3.2 軟體規劃 48
3.4 實驗結果與討論 50
3.4.1 額定點測試結果 51
3.4.2 效率比較 54
3.4.3 功率控制測試結果 58
第四章 半橋LCLR諧振轉換器研製 60
4.1 半橋LCLR諧振轉換器電路特性 60
4.1.1 電路分析 60
4.2 半橋LCLR諧振轉換器之硬體設計 62
4.2.1 半橋電路設計 62
4.2.2 諧振槽電路設計 63
4.3 半橋LCLR諧振轉換器之控制架構 68
4.4 實驗結果與討論 70
4.4.1 穩態測試結果 71
4.4.2 鍋電磁爐輸出功率及等效參數量測 75
4.4.3 定功率控制測試結果 79
4.4.4 鍋具磁通密度分布之模擬結果 80
[1]Valery Rudnev, Don Loveless, Raymond L. Cook, Micah Black, “Handbook of Induction Heating,” Marcel Dekker, Dec, 2002.
[2]O. Lucía, P. Maussion, E. J. Dede and J. M. Burdío, “Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2509-2520, May, 2014.
[3]Tumor Depletion with Combined Magnetic Hyperthermia and Photodynamic Therapy. [Online]. Available: http://www.sepmag.eu/clog/tumor-depletion-magnetic- hyperthermia
[4]Micah Sweeney, Jeff Dols, Brian Fortenbery, and Frank Sharp, “Induction Cooking Technology Design and Assessment,” ACEEE, August, 2014.
[5]O. Lucia, J. Acero, C. Carretero and J. M. Burdio, “Induction Heating Appliances: Toward More Flexible Cooking Surfaces,” IEEE Ind. Electron. Mag., vol. 7, no. 3, pp. 35-47, Sept, 2013.
[6]全國法規資料庫。 [Online]. Available : http://law.moj.gov.tw/
[7]全部電化優點。 [Online]. Available: http://www.biccamera.co.jp.t.lj.hp.transer.com/ service/support/alldenka.html
[8]江玲,「淺談全電化住宅之利弊」,瓦斯季刊,第八十九期,第71-79頁,2009。
[9]J. Acero et al., “The Domestic Induction Heating Appliance: An Overview of Recent Research,” APEC, pp. 651-657, 2008.
[10]M. Pérez-Tarragona, H. Sarnago, Ó. Lucia and J. M. Burdío, “Series Resonant Multi- Inverter Prototype for Domestic Induction Heating,” IECON, pp. 005444-005449, 2015.
[11]O. Lucia, J. M. Burdio, I. Millan, J. Acero and D. Puyal, “Load-Adaptive Control Algorithm of Half-Bridge Series Resonant Inverter for Domestic Induction Heating,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3106-3116, Aug. 2009.
[12]P. Viriya, S. Sittichok and K. Matsuse, “Analysis of High-Frequency Induction Cooker with Variable Frequency Power Control,” Proceedings of the Power Conversion Conference, vol. 3, pp. 1502-1507, 2002.
[13]P. Imbertson and N. Mohan, “Asymmetrical Duty Cycle Permits Zero Switching Loss in PWM Circuits With no Conduction Loss Penalty,” IEEE Trans. Ind. Applicat., vol. 29, no. 1, pp. 121-125, Jan/Feb, 1993.
[14]D. J. Tschirhart and P. K. Jain, “A CLL Resonant Asymmetrical Pulsewidth-Modulated Converter With Improved Efficiency,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 114-122, Jan, 2008.
[15]I. Millán, J. M. Burdío, J. Acero, O. Lucía and S. Llorente, “Series Resonant Inverter with Selective Harmonic Operation Applied to All-Metal Domestic Induction Heating,” IET Power Electron, vol. 4, no. 5, pp. 587-592, May, 2011.
[16]H. Sadakata et al., “Latest Practical Developments of Triplex Series Load Resonant Frequency-Operated High Frequency Inverter for Induction-Heated Low Resistivity Metallic Appliances in Consumer Built-In Cooktops,” APEC, 2010, pp. 1825-1832.
[17]A. Fujita, H. Sadakata, I. Hirota, H. Omori and M. Nakaoka, “Latest Developments of High-Frequency Series Load Resonant Inverter Type Built-In Cooktops for Induction Heated all Metallic Appliances,” IEEE International Power Electronics and Motion Control Conference, pp. 2537-2544, 2009.
[18]A. Amrhein and J. S. J. Lai, “A Transformer-Coupled, Series-Resonant Topology for The Induction Heating of Aluminum Cookware,” ECCE, pp. 1234-1239, 2015.
[19]Panasonic Takes Induction to the Next Level [Online]. Available: https://www.sefa.com/panasonic-takes-induction-next-level/
[20]M. Hediehloo and M. Akhbari, “New Approach in Design of Planar Coil of Induction Cooker Based on Skin and Proximity Effects Analysis,” IEEE Conference. Industrial Technology, pp. 1-6, 2009.
[21]C. Carretero, O. Lucía, J. Acero and J. M. Burdío, “FEA Tool Based Model of Partly Coupled Coils Used in Domestic Induction Cookers,” IECON, pp. 2533-2538, 2011.
[22]L. C. Meng, K. W. E. Cheng and S. L. Ho, “Multicoils Design for Induction Cookers With Applying Switched Exciting Method,” IEEE Trans. Magn., vol. 48, no. 11, pp. 4503-4506, Nov, 2012.
[23]M. Hataya, Y. Oka, K. Umetani, E. Hiraki, T. Hirokawa and M. Imai, “Novel Thin Heating Coil Structure With Reduced Copper Loss for High Frequency Induction Cookers,” ICEMS, pp. 1-6, 2016.
[24]C. Carretero, R. Alonso and J. Acero, “Interference Emission Estimation of Domestic Induction Cookers Based on Finite-Element Simulation,” IEEE Trans. Electromagn. Compat., vol. 58, no. 4, pp. 993-999, Aug, 2016.
[25]H. Sarnago, O. Lucia and J. M. Burdío, “Advanced Induction Heating Appliances Using High-Voltage GaN Gate Injection Transistors,” APEC, pp. 1375-1380, 2015.
[26]The Induction Heating Principle by CCA Litz Cable Current Supplying. [Online]. Available: http://hflitzwire.com/litz-wire-theory-and-principle/
[27]AND9166-Induction Cooking Everything You Need to Know. [Online]. Available: http://www.onsemi.cn/PowerSolutions/document/AND9166-D.PDF
[28]Z. Liou, High Frequency Inverter Power Stage Design Considerations for Non-Magnetic Materials Induction Cooking, Master Theses, Virginia Polytechnic Institute and State University, Virginia, USA, 2014.
[29]趙修科,開關電源中磁性元件,遼寧科學技術出版社,2002。
[30]Skin-Effect and Skin Depth. [Online]. Available: http://test.elektrisola.com/en/hf-litz-wire/terminology-basics/technical-basics-and-calculation.html
[31]Example of Skin Effect in Circular Wire. [Online]. Available: https://commons.wikimedia.org/wiki/File:Example_of_skin_effect_in_circular_wire.png
[32]LITZ WIRE [Online]. Available:
http://www.psma.com/sites/default/files/uploads/tech-forums-magnetics/presentations/is95-litz-wire-practical-discussion-its-uses-and-limitations-high-frequency-transformers.pdf
[33]江炫樟譯,電力電子學,第三版,全華科技圖書,2004。
[34]陳柏澔,以小訊號模型設計具高頻寬電壓控制之串聯諧振轉換器,碩士論文,國立台北科技大學電機工程研究所,台北,2014。
[35]U.S. Department of Energy, Wide Bandgap Semiconductors: Pursuing the Promise. [Online]. Available:
http://energy.gov/eere/amo/downloads/wide-bandgap-semiconductors - pursuing-promise
[36]H. Oyakemori, “Up for the SiC Power Device Applied to Toyotas Environmentally Friendly Vehicle Assembly,” Motor Technology Symposium, Techno-Frontier. 2015.
[37]Y. Uemoto et al., “Gate Injection Transistor (GIT) — A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393-3399, Dec, 2007.
[38]H. Ishida, “Application to the Si Substrate on GaN Power Devices and Power Electronics,” Motor Technology Symposium, Techno-Frontier. 2016.
[39]Ansys Electronics Solutions. [Online].Available:
http://www.ansys.com/-/media/Ansys/zn-cn/file/PDF/electronics-solutions-17
[40]High-Speed Layout Guidelines. [Online]. Available :
http://www.ti.com/lit/an/scaa082/scaa082.pdf
[41]Transphorm [Online]. Available: http://www.transphormusa.com/
[42]Infineon [Online]. Available: https://www.infineon.com/
[43]J. M. Espi, E. J. Dede, A. Ferreres and R. Garcia, “Steady-State Frequency Analysis of the “LLC” Resonant Inverter for Induction Heating,” CIEP, pp. 22-28, 1996.
[44]A. Schonknecht and R. W. A. A. De Doncker, “Novel Topology for Parallel Connection of Soft-Switching High-Power High-Frequency Inverters,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 550-555, Mar/Apr, 2003.
[45]S. Dieckerhoff, M. J. Ruan and R. W. De Doncker, “Design of an IGBT-Based LCL-Resonant Inverter for High-Frequency Induction Heating,” IAS, pp. 2039-2045 vol.3, 1999.
[46]TDK [Online]. Available: http://www.global.tdk.com/
[47]GaN-Tr Application Note [Online]. Available: https://industrial.panasonic.com/ww/products/semiconductors/powerics/ganpower
[48]TI TMS320F28035 Datasheet [Online]. Available: http://www.ti.com/product/TMS320F28035
[49] CWT Ultra-Mini 06 Rogowski Current Probe Datasheet [Online]. Available:
http://www.pemuk.com/products/cwt-current-probe/cwt-ultra-mini.aspx
[50] Picotest P2000A GaN Probe Datasheet [Online]. Available: https://www.picotest.com/products_GaN_Probe.html
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top