吳柏叡。2019。臺灣稻熱病菌AVR-Pik基因型組成與致病性之分析。國立臺灣大學植物病理與微生物學研究碩士論文。林國詞。2014。雲嘉南地區水稻稻熱病之發生與綜合管理。臺南區農業專訊 87: 22-25。
林家玉。2018。臺東縣內水稻主要栽培品種104年至106年稻熱病特性檢定結果。臺東區農業專訊 103: 5-7。
邱運全、吳志文。2005。水稻新品種-高雄145號 (晶鑽)。高雄區農業改良場研究彙報 16(3): 1-14。
施昱全。2017。台農82號誘變系與臺灣栽培稻抗稻熱病基因座之定位。國立臺灣大學植物病理與微生物學研究碩士論文。張為斌。2015。臺農84號抗稻熱病基因座之分析定位。國立臺灣大學植物病理與微生物學研究碩士論文。廖大經、陳隆澤、吳志文、鍾嘉綾。2016。水稻''LTH''單基因系與''CO 39''近同源系對臺灣稻熱病菌之反應。台灣農業研究 65(1): 8-17。
蔡武雄。2007。稻熱病。植物保護圖鑑系列8-水稻保護(下冊): 265-272。
蔡翰沅、黃榮作、彭瑞菊。2008。97年雲嘉南地區水稻稻熱病與白葉枯病發生概況。臺南區農業專訊 68: 16-18。
陳隆澤、陳一心、程永雄。2004。1990至2002年臺灣水稻品種(系)抗稻熱病檢定。中華農業研究 53: 269-283。
陳隆澤、黃守宏、鄭清煥。2009。水稻病蟲害抗性檢定工作回顧。台灣水稻保護成果及新展望研討會專刊 83-103。
陳韋綸、沈偉強、張芳瑜、張為斌、余宗學、賴明信、廖睿瑜、吳志文、鍾嘉綾。2015。應用於臺灣良質米品種改良之抗稻熱病基因座分析與分子標誌開發。植病會刊 24: 225-240。
陳韋綸。2016。建立分子標誌平臺以進行抗稻熱病多系品種之選育。國立臺灣大學植物病理與微生物學研究碩士論文。簡錦忠、謝麗娟、張義璋。1989。水稻台農70號對稻熱病抗性之罹病化研究。中華農業研究 38(1): 72-79。
Abe, S. 2004. Breeding of a blast resistant multiline variety of rice, Sasanishiki BL. Jpn. Agr. Res. Q. 38:149-154.
Ahmadikhah, A. 2009. Rapid mini-prep DNA extraction method in rice (Oryza sativa). Afr. J. Biotechnol. 8.
Ashikawa, I., Hayashi, N., Abe, F., Wu, J., and Matsumoto, T. 2012. Characterization of the rice blast resistance gene Pik cloned from Kanto51. Mol. Breeding 30:485-494.
Ashikawa, I., Hayashi, N., Yamane, H., Kanamori, H., Wu, J., Matsumoto, T., Ono, K., and Yano, M. 2008. Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm specific rice blast resistance. Genetics 180:2267.
Ashkani, S., Rafii, M. Y., Shabanimofrad, M., Ghasemzadeh, A., Ravanfar, S. A., and Latif, M. A. 2016. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit. Rev. Biotechnol. 36:353-367.
Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. 2013. GenBank. Nucleic Acids Res. 41:D36-D42.
Bernoux, M., Ve, T., Williams, S., Warren, C., Hatters, D., Valkov, E., Zhang, X., Ellis, J. G., Kobe, B., and Dodds, P. 2011. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200-211.
Białas, A., Zess, E. K., De la Concepcion, J. C., Franceschetti, M., Pennington, H. G., Yoshida, K., Upson, J. L., Chanclud, E., Wu, C.-H., Langner, T., Maqbool, A., Varden, F. A., Derevnina, L., Belhaj, K., Fujisaki, K., Saitoh, H., Terauchi, R., Banfield, M. J., and Kamoun, S. 2017. Lessons in effector and NLR biology of plant-microbe systems. Mol. Plant-Microbe Interact. 31:34-45.
Bryan, G. T., Wu, K.-S., Farrall, L., Jia, Y., Hershey, H. P., McAdams, S. A., Faulk, K. N., Donaldson, G. K., Tarchini, R., and Valent, B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033-2045.
Campbell, M., Chen, D., and Ronald, P. 2004. Development of co-dominant amplified polymorphic sequence markers in rice that flank the Magnaporthe grisea resistance gene Pi7 (t) in recombinant inbred line 29. Phytopathology 94:302-307.
Chauhan, R., Farman, M., Zhang, H.-B., and Leong, S. 2002. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39 (t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol. Genet. Genomics 267:603-612.
Chen, J., Peng, P., Tian, J., He, Y., Zhang, L., Liu, Z., Yin, D., and Zhang, Z. 2015. Pike, a rice blast resistance allele consisting of two adjacent NBS–LRR genes, was identified as a novel allele at the Pik locus. Mol. Breeding 35:117.
Chen, S., Su, J., Han, J., Wang, W., Wang, C., Yang, J., Zeng, L., Wang, X., Zhu, X., and Yang, C. 2014. Resistance spectrum assay and fine mapping of the blast resistance gene from a rice experimental line, IRBLta2-Re. Euphytica 195:209-216.
Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., and Cao, G. 2006. A B‐lectin receptor kinase gene conferring rice blast resistance. Plant J. 46:794-804.
Collard, B. C. Y., and Mackill, D. J. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. T. R. Soc. B. 363:557-572.
Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16:10881-10890.
Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., and Blaxter, M. L. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12:499.
Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., Li, Q., Zhang, J., Wu, S., Milazzo, J., Mao, B., Wang, E., Xie, H., Tharreau, D., and He, Z. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962-965.
DeYoung, B. J., and Innes, R. W. 2006. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7:1243-1249.
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., and Mitchell, S. E. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379.
Farman, M. L., and Leong, S. 1998. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics 150:1049-1058.
Fukuoka, S., Saka, N., Koga, H., Ono, K., Shimizu, T., Ebana, K., Hayashi, N., Takahashi, A., Hirochika, H., and Okuno, K. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998-1001.
Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., Hayashi, N., Ebana, K., Mizobuchi, R., and Yano, M. 2015. Gene pyramiding enhances durable blast disease resistance in rice. Sci. Rep. 5:7773.
Fukuta, Y., Koga, I., Ung, T., Sathya, K., Kawasaki-Tanaka, A., Koide, Y., Kobayashi, N., Obara, M., Yadana, H., and Hayashi, N. 2014. Pathogenicity of rice blast Pyricularia oryzae Cavara Isolates from Cambodia. Jpn. Agr. Res. Q. 48:155-166.
Furuta, T., Ashikari, M., Jena, K. K., Doi, K., and Reuscher, S. 2017. Adapting genotyping-by-sequencing for rice F2 populations. G3-Genes Genom. Genet. 7:881-893.
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., and Bairoch, A. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31:3784-3788.
Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., and Buckler, E. S. 2014. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PloS One 9:e90346.
Gouda, P. K., Saikumar, S., Varma, C. M. K., Nagesh, K., Thippeswamy, S., Shenoy, V., Ramesha, M. S., and Shashidhar, H. E. 2013. Marker-assisted breeding of Pi-1 and Piz-5 genes imparting resistance to rice blast in PRR78, restorer line of Pusa RH-10 Basmati rice hybrid. Plant Breeding 132:61-69.
Hasan, M. M., Rafii, M. Y., Ismail, M. R., Mahmood, M., Rahim, H. A., Alam, M. A., Ashkani, S., Malek, M. A., and Latif, M. A. 2015. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol. Biotec. Eq. 29:237-254.
Hayashi, K., Yoshida, H., and Ashikawa, I. 2006. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor. Appl. Genet. 113:251-260.
He, J., Zhao, X., Laroche, A., Lu, Z.-X., Liu, H., and Li, Z. 2014. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 5.
Hua, L., Wu, J., Chen, C., Wu, W., He, X., Lin, F., Wang, L., Ashikawa, I., Matsumoto, T., and Wang, L. 2012. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor. Appl. Genet. 125:1047-1055.
Imam, J., Alam, S., Mandal, N. P., Variar, M., and Shukla, P. 2014. Molecular screening for identification of blast resistance genes in North East and Eastern Indian rice germplasm (Oryza sativa L.) with PCR based makers. Euphytica 196:199-211.
Imbe, T., Oba, S., Yanoria, M. J. T., and Tsunematsu, H. 1997. A new gene for blast resistance in rice cultivar IR24. Rice Genet. Newsl. 14:60-62.
IRRI. 2013. Standard evaluation system for rice. 5th ed. International Rice Research Institute, Manila, Philipine.
Ishizaki, K., Hoshi, T., Abe, S.-i., Sasaki, Y., Kobayashi, K., Kasaneyama, H., Matsui, T.-a., and Azuma, S. 2005. Breeding of blast resistant isogenic lines in rice variety “Koshihikari” and evaluation of their characters. Breeding Sci. 55:371-377.
Jia, Y., Wang, Z., Fjellstrom, R. G., Moldenhauer, K. A. K., Azam, M. A., Correll, J., Lee, F. N., Xia, Y., and Rutger, J. N. 2004. Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the United States. Phytopathology 94:296-301.
Jiang, H., Feng, Y., Bao, L., Li, X., Gao, G., Zhang, Q., Xiao, J., Xu, C., and He, Y. 2012. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol. Breeding 30:1679-1688.
Joshi, R. K., and Nayak, S. 2010. Gene pyramiding-a broad spectrum technique for developing durable stress resistance in crops. Biotech. Mol. Biol. Rev. 5:51-60.
Kalia, S., and Rathour, R. 2019. Current status on mapping of genes for resistance to leaf-and neck-blast disease in rice. Biotech 9:209.
Kanzaki, H., Yoshida, K., Saitoh, H., Fujisaki, K., Hirabuchi, A., Alaux, L., Fournier, E., Tharreau, D., and Terauchi, R. 2012. Arms race co‐evolution of Magnaporthe oryzae AVR‐Pik and rice Pik genes driven by their physical interactions. Plant J. 72:894-907.
Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J., and Zhou, S. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4.
Khanna, A., Sharma, V., Ellur, R. K., Shikari, A. B., Krishnan, S. G., Singh, U., Prakash, G., Sharma, T., Rathour, R., and Variar, M. 2015. Development and evaluation of near-isogenic lines for major blast resistance gene (s) in Basmati rice. Theor. Appl. Genet. 128:1243-1259.
Kobayashi, N., Telebanco-Yanoria, M. J., Tsunematsu, H., Kato, H., Imbe, T., and Fukuta, Y. 2007. Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). Jpn. Agr. Res. Q. 41:31-37.
Li, W., Lei, C., Cheng, Z., Jia, Y., Huang, D., Wang, J., Wang, J., Zhang, X., Su, N., and Guo, X. 2008. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20 (t) for marker-assisted breeding. Mol. Breeding 22:141-149.
Liu, J., Wang, X., Mitchell, T., Hu, Y., Liu, X., Dai, L., and Wang, G.-L. 2010. Recent progress and understanding of the molecular mechanisms of the rice–Magnaporthe oryzae interaction. Mol. Plant Pathol. 11:419-427.
Long, D. H., Lee, F. N., and TeBeest, D. O. 2000. Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars. Plant Dis. 84:403-409.
Maekawa, T., Cheng, W., Spiridon, L. N., Töller, A., Lukasik, E., Saijo, Y., Liu, P., Shen, Q.-H., Micluta, M. A., and Somssich, I. 2011. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9:187-199.
Maqbool, A., Saitoh, H., Franceschetti, M., Stevenson, C. E. M., Uemura, A., Kanzaki, H., Kamoun, S., Terauchi, R., and Banfield, M. J. 2015. Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. ELIFE 4:e08709.
Matsuyama, N. 1975. The effect of ample nitrogen fertilizer on cell-wall materials and its significance to rice blast disease. Jpn. J. Phytopathol. 41:56-61.
Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Asfaliza, R., and Latif, M. A. 2013. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol. Biol. Rep. 40:2369-2388.
Money, D., Gardner, K., Migicovsky, Z., Schwaninger, H., Zhong, G.-Y., and Myles, S. 2015. LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3-Genes Genom. Genet. 5:2383-2390.
Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., and Labhane, N. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotech. Eq. 32:261-285.
Narasimhulu, R., Varadarajula, N. N., Mallapuram, S. P., Govardhan, G., Reddy, R. K., and Kondreddy, H. R. 2013. Marker assisted selection in disease resistance breeding. J. Plant Breed. Genet. 1:90-109.
Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., Han, B., and Wang, G.-L. 2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901-1914.
Sasahara, M., and Koizumi, S. 2004. Rice blast control with Sasanishiki multilines in Miyagi Prefecture. Pages 201-207 in: Rice Blast: Interaction with Rice and Control, S. Kawasaki, ed. Springer Netherlands, Dordrecht.
Sharma, T. R., Rai, A. K., Gupta, S. K., and Singh, N. K. 2010. Broad-spectrum blast resistance gene Pi-kh cloned from rice line Tetep designated as Pi54. J Plant Biochem. Biot. 19:87-89.
Sharma, T. R., Rai, A. K., Gupta, S. K., Vijayan, J., Devanna, B. N., and Ray, S. 2012. Rice blast management through host-plant resistance: retrospect and prospects. Agr. Res.:37-52.
Singh, B. D., and Singh, A. K. 2015. Marker-assisted plant breeding: principles and practices. Springer, New Delhi.
Su, J., Wang, W., Han, J., Chen, S., Wang, C., Zeng, L., Feng, A., Yang, J., Zhou, B., and Zhu, X. 2015. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor. Appl. Genet. 128:2213-2225.
Sundaram, R. M., Vishnupriya, M. R., Biradar, S. K., Laha, G. S., Reddy, G. A., Rani, N. S., Sarma, N. P., and Sonti, R. V. 2008. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411-422.
Telebanco-Yanoria, M. J., Imbe, T., Kato, H., Tsunematsu, H., Ebron, L. A., Cruz, C. M. V., Kobayashi, N., and Fukuta, Y. 2008. A set of standard differential blast isolates (Magnaporthe grisea (Hebert) Barr.) from the Philippines for rice (Oryza sativa L.) resistance. Jpn. Agr. Res. Q. 42:23-34.
Telebanco-Yanoria, M. J., Koide, Y., Fukuta, Y., Imbe, T., Tsunematsu, H., Kato, H., Ebron, L. A., Nguyen, T. M. N., and Kobayashi, N. 2011. A set of near-isogenic lines of Indica-type rice variety CO 39 as differential varieties for blast resistance. Mol. Breeding 27:357-373.
Tsunematsu, H., Yoshimura, A., Harushima, Y., Nagamura, Y., Kurata, N., Yano, M., Sasaki, T., and Iwata, N. 1996. RFLP framework map using recombinant inbred lines in rice. Jpn. J. Breed. 46:279-284.
Tsunematsu, H., Yanoria, M. J. T., Ebron, L. A., Hayashi, N., Ando, I., Kato, H., Imbe, T., and Khush, G. S. 2000. Development of monogenic lines of rice for blast resistance. Breeding Sci. 50:229-234.
Variar, M., Cruz, C. M. V., Carrillo, M. G., Bhatt, J. C., and Sangar, R. B. S. 2009. Rice blast in India and strategies to develop durably resistant cultivars. Pages 359-373 in: Advances in Genetics, Genomics and Control of Rice Blast Disease. G. L. Wang and B. Valent, eds. Springer, Dordrecht.
Wang, B. H., Ebbole, D. J., and Wang, Z. H. 2017. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. J. Integr. Agr. 16:2746-2760.
Wang, G.-L., Mackill, D. J., Bonman, J. M., McCouch, S. R., Champoux, M. C., and Nelson, R. J. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421-1434.
Wang, J. C., Correll, J. C., and Jia, Y. 2015. Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays. Crop Prot. 72:132-138.
Wang, J. C., Jia, Y., Wen, J. W., Liu, W. P., Liu, X. M., Li, L., Jiang, Z. Y., Zhang, J. H., Guo, X. L., and Ren, J. P. 2013. Identification of rice blast resistance genes using international monogenic differentials. Crop Prot. 45:109-116.
Wang, X., Lee, S., Wang, J., Ma, J., Bianco, T., and Jia, Y. 2014. Current advances on genetic resistance to rice blast disease. Pages 195-217 in: Rice-Germplasm, Genetics and Improvement. W. Yan and J. Bao, eds. IntechOpen.
Wu, Y., Yu, L., Pan, C., Dai, Z., Li, Y., Xiao, N., Zhang, X., Ji, H., Huang, N., Zhao, B., Zhou, C., Liu, G., Liu, X., Pan, X., Liang, C., and Li, A. 2016. Development of near-isogenic lines with different alleles of Piz locus and analysis of their breeding effect under Yangdao 6 background. Mol. Breeding 36:12.
Ye, S., Dhillon, S., Ke, X., Collins, A. R., and Day, I. N. 2001. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29:e88-e88.
Yoshida, K., and Miyashita, N. T. 2009. DNA polymorphism in the blast disease resistance gene Pita of the wild rice Oryza rufipogon and its related species. Genes Genet. Syst. 84:121-136.
You, F. M., Huo, N., Gu, Y. Q., Luo, M. c., Ma, Y., Hane, D., Lazo, G. R., Dvorak, J., and Anderson, O. D. 2008. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC bioinformatics 9:253.
Yuan, B., Zhai, C., Wang, W., Zeng, X., Xu, X., Hu, H., Lin, F., Wang, L., and Pan, Q. 2011. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor. Appl. Genet. 122:1017-1028.
Zhai, C., Lin, F., Dong, Z., He, X., Yuan, B., Zeng, X., Wang, L., and Pan, Q. 2011. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 189:321-334.
Zhai, C., Zhang, Y., Yao, N., Lin, F., Liu, Z., Dong, Z., Wang, L., and Pan, Q. 2014. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One 9:e98067.
Zhao, H., Wang, X., Jia, Y., Minkenberg, B., Wheatley, M., Fan, J., Jia, M. H., Famoso, A., Edwards, J. D., and Wamishe, Y. 2018. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat. Commun. 9:2039.
Zhou, B., Dolan, M., Sakai, H., and Wang, G.-L. 2007. The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Mol. Plant-Microbe Interact. 20:63-71.
Zhou, B., Qu, S., Liu, G., Dolan, M., Sakai, H., Lu, G., Bellizzi, M., and Wang, G.-L. 2006. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant-Microbe Interact. 19:1216-1228.
Zhu, X., Chen, S., Yang, J., Zhou, S., Zeng, L., Han, J., Su, J., Wang, L., and Pan, Q. 2012. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor. Appl. Genet. 124:1295-1304.