|
1. Maturová, K., et al., Morphological device model for organic bulk heterojunction solar cells. 2009. 9(8): p. 3032-3037. 2. Madogni, V.I., et al., Comparison of degradation mechanisms in organic photovoltaic devices upon exposure to a temperate and a subequatorial climate. 2015. 640: p. 201-214. 3. Janotti, A. and C.G.J.R.o.p.i.p. Van de Walle, Fundamentals of zinc oxide as a semiconductor. 2009. 72(12): p. 126501. 4. Look, D.C., Recent advances in ZnO materials and devices. Materials Science and Engineering: B, 2001. 80(1): p. 383-387. 5. Fan, J.C., et al., p-Type ZnO materials: theory, growth, properties and devices. 2013. 58(6): p. 874-985. 6. Parida, B., et al., A review of solar photovoltaic technologies. 2011. 15(3): p. 1625-1636. 7. Chopra, K., et al., Thin‐film solar cells: an overview. 2004. 12(2‐3): p. 69-92. 8. Kibria, M.T., et al. A Review: Comparative studies on different generation solar cells technology. in Proc. of 5th International Conference on Environmental Aspects of Bangladesh. 2014. 9. Miles, R.W., G. Zoppi, and I.J.M.t. Forbes, Inorganic photovoltaic cells. 2007. 10(11): p. 20-27. 10. Van Wieringen, A. and N.J.P. Warmoltz, On the permeation of hydrogen and helium in single crystal silicon and germanium at elevated temperatures. 1956. 22(6-12): p. 849-865. 11. Kaur, M., H.J.I.J.O.C.E. Singh, and Management, A review: comparison of silicon solar cells and thin film solar cells. 2016. 3(2): p. 15-23. 12. Rajh, T., et al., Semiconductor photophysics. 7. Photoluminescence and picosecond charge carrier dynamics in cadmium sulfide quantum dots confined in a silicate glass. 1992. 96(11): p. 4633-4641. 13. Hou, J., et al., Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. 2009. 131(43): p. 15586-15587. 14. Marks, R., et al., The photovoltaic response in poly (p-phenylene vinylene) thin-film devices. 1994. 6(7): p. 1379. 15. McGehee, M.D. and M.A.J.N.m. Topinka, Solar cells: Pictures from the blended zone. 2006. 5(9): p. 675. 16. Peumans, P., A. Yakimov, and S.R.J.J.o.A.P. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. 2003. 93(7): p. 3693-3723. 17. Tang, C.W.J.A.P.L., Two‐layer organic photovoltaic cell. 1986. 48(2): p. 183-185. 18. Dennler, G., M.C. Scharber, and C.J. Brabec, Polymer‐fullerene bulk‐heterojunction solar cells. Advanced materials, 2009. 21(13): p. 1323-1338. 19. Wong, K.W., et al., Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer. 2002. 80(15): p. 2788-2790. 20. Thambidurai, M., et al., Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. 2014. 66: p. 433-442. 21. Lattante, S.J.E., Electron and hole transport layers: their use in inverted bulk heterojunction polymer solar cells. 2014. 3(1): p. 132-164. 22. Conings, B., et al., Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells. 2010. 96(16): p. 81. 23. Ahmad, J., et al., Materials and methods for encapsulation of OPV: A review. 2013. 27: p. 104-117. 24. Qi, B., Z.-G. Zhang, and J.J.S.R. Wang, Uncovering the role of cathode buffer layer in organic solar cells. 2015. 5: p. 7803. 25. Hermerschmidt, F., et al., Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols. 2017. 9(16): p. 14136-14144. 26. Lai, T.-H., et al., Properties of interlayer for organic photovoltaics. 2013. 16(11): p. 424-432. 27. Brauer, G., et al. Activities towards p-type doping of ZnO. in Journal of Physics: Conference Series. 2011. IOP Publishing. 28. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. 2013: Springer Science & Business Media. 29. Kato, Y.K., et al., Observation of the spin Hall effect in semiconductors. 2004. 306(5703): p. 1910-1913. 30. Beccat, P., et al., Quantitative surface analysis by XPS (X-ray photoelectron spectroscopy): application to hydrotreating catalysts. 1999. 54(4): p. 487-496. 31. Kanai, K., et al., Electronic structure of anode interface with molybdenum oxide buffer layer. 2010. 11(2): p. 188-194. 32. Meyer, J., et al., Transition metal oxides for organic electronics: energetics, device physics and applications. 2012. 24(40): p. 5408-5427. 33. Kröger, M., et al., Role of the deep-lying electronic states of MoO 3 in the enhancement of hole-injection in organic thin films. 2009. 95(12): p. 251. 34. Sanehira, E.M., et al., Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoO x/Al for hole collection. 2016. 1(1): p. 38-45. 35. Gulbinski, W., et al., Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films. 2001. 475(1-3): p. 149-158. 36. Beek, W.J., et al., Hybrid solar cells using a zinc oxide precursor and a conjugated polymer. 2005. 15(10): p. 1703-1707. 37. Goh, E., X. Xu, and P.J.S.M. McCormick, Effect of particle size on the UV absorbance of zinc oxide nanoparticles. 2014. 78: p. 49-52. 38. Zhou, J., et al., Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties. Journal of Luminescence, 2007. 122-123: p. 195-197. 39. Willardson, R.K., E.R. Weber, and M. Stavola, Identification of Defects in Semiconductors. 1998: Academic Press. 40. Chi, C.-Y., et al., ZnO as an effective hole transport layer for water resistant organic solar cells. Journal of Materials Chemistry A, 2018. 6(15): p. 6542-6550. 41. Dixit, T., I. Palani, and V.J.R.A. Singh, Insights into non-noble metal based nanophotonics: exploration of Cr-coated ZnO nanorods for optoelectronic applications. 2018. 8(13): p. 6820-6833. 42. Vanheusden, K., et al., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. 1996. 68(3): p. 403-405. 43. Fabbri, F., et al., S-induced modifications of the optoelectronic properties of ZnO mesoporous nanobelts. Scientific Reports, 2016. 6: p. 27948. 44. Moore, K., M.L.J.P. Pantoya, Explosives, Pyrotechnics: An International Journal Dealing with Scientific, and T.A.o.E. Materials, Combustion of environmentally altered molybdenum trioxide nanocomposites. 2006. 31(3): p. 182-187. 45. Yu, J., C. Li, and S. Liu, Effect of PSS on morphology and optical properties of ZnO. Journal of Colloid and Interface Science, 2008. 326(2): p. 433-438. 46. Yang, H.B., et al., Cesium Carbonate Functionalized Graphene Quantum Dots as Stable Electron-Selective Layer for Improvement of Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014. 6(2): p. 1092-1099. 47. Gregor, H.P., F.C. Collins, and M. Pope, Studies on ion-exchange resins. III. Diffusion of neutral molecules in a sulfonic acid cation-exchange resin. Journal of Colloid Science, 1951. 6(4): p. 304-322. 48. Buttersack, C., Accessibility and catalytic activity of sulfonic acid ion-exchange resins in different solvents. Reactive Polymers, 1989. 10(2): p. 143-164. 49. Wang, H., et al., Growth of p-type ZnO thin films by (N, Ga) co-doping using DMHy dopant. Journal of Physics D: Applied Physics, 2007. 40(15): p. 4682-4685. 50. Yuan, J., et al., The aggregation of polystyrene-b-poly (ethylene oxide)-b-polystyrene triblock copolymers in aqueous solution. 2002. 38(8): p. 1537-1546.
|