跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/06 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王一霖
研究生(外文):YI-LIN WANG
論文名稱:恆溫下含水、丙二醇甲醚與丙二醇甲醚丙酸酯系統之汽液液相平衡研究
論文名稱(外文):Isothermal Vapor-Liquid Equilibria for Mixtures Containing Water, Propylene Glycol Monomethyl Ether, and Propylene Glycol Monomethyl Ether Propionate
指導教授:李明哲李明哲引用關係
指導教授(外文):Ming-Jer Lee
口試委員:李明哲
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:116
中文關鍵詞:丙二醇甲醚丙二醇甲醚丙酸酯汽液液相平衡
外文關鍵詞:Isothermal Vapor-Liquid EquilibriaWaterPropylene Glycol Monomethyl EtherPropylene Glycol Monomethyl Ether Propionate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用一套具有視窗平衡釜的靜態式相平衡量測裝置,量取恆溫下之汽液相平衡與汽液液相平衡數據,其量測溫度介於318.15 K至363.15 K。本研究量測丙二醇甲醚+丙二醇甲醚丙酸酯雙成分系統的汽液平衡數據,以及水+丙二醇甲醚丙酸酯與水+丙二醇甲醚+丙二醇甲醚丙酸酯的汽液液平衡數據。水+丙二醇甲醚丙酸酯汽液液平衡數據丙二醇甲醚+丙二醇甲醚丙酸酯汽液平衡系統數據均能以NRTL-HOC及UNIQUAC-HOC模式搭配溫度線性關係的參數,獲得良好的關聯結果。使用由雙成分系統的汽液平衡或汽液液平衡數據所訂定的參數,無法準確地估算水+丙二醇甲醚+丙二醇甲醚丙酸酯三成分系統的汽液液平衡性質。本研究所量得的三成分汽液液平衡數據也用於檢驗多種版本之UNIFAC模式的合適性。以同時調整NRTL-HOC及UNIQUAC-HOC模式中的模式參數的方式,可大幅地改善對水+丙二醇甲醚+丙二醇甲醚丙酸酯三成分系統之汽液液平衡性質的描述。
A static-type apparatus equipped with a visual cell was utilized in the present study to measure isothermal vapor-liquid equilibrium (VLE) and vapor-liquid-liquid equilibrium (VLLE) data over a temperature range of 318.15 K to 363.15 K. The VLE data were determined experimentally for the binary systems of propylene glycol monomethyl ether (PGME) + propylene glycol monomethyl ether propionate (PGMEP). The VLLE data were also measured for water + PGMEP and water + PGME + PGMEP. The experimental data of the binary systems can be correlated well with the NRTL-HOC and the UNIQUAC-HOC models by using linearly temperature-dependent parameters. The ternary VLLE properties can not be estimated accurately by using the parameters determined from the phase equilibrium data of the constituent binaries. The ternary VLLE data were also used to test the validity of various versions of the UNIFAC model. The representation of the ternary VLLE properties is substantially improved as the parameters of the NRTL and the UNIQUAC models are determined simultaneously from the ternary VLLE data.
Abstract I
摘要 II
目錄 III
表目錄 VI
圖目錄 VIII
符號說明 XII
第一章 緒論 1
1-1前言 1
1-2丙二醇甲醚丙酸酯 2
1-3 相平衡量測 5
1-4 汽液相平衡與汽液液相平衡理論基礎 10
1-4-1 汽液相平衡理論基礎 11
1-4-2 汽液液相平衡理論基礎 12
1-5 UNIFAC模式之應用與版本 13
1-6 本文各章要點 14
IV
第二章 汽液與汽液液相平衡之量測 18
2-1 儀器設備 18
2-2 實驗裝置 19
2-2-1除氣及進料系統 20
2-2-2平衡系統 20
2-2-3取樣與組成分析系統 21
2-3實驗藥品 22
2-4 汽液液相平衡量測的操作程序 22
2-4-1 樣品進料操作程序 22
2-4-2取樣操作程序 23
2-5汽液相平衡量測的操作程序 26
2-6純質蒸氣壓 26
2-7 組成分析方法 27
2-7-1 氣相層析儀之校正曲線 27
2-7-2 配件規格與分析條件 28
2-8 實驗結果 30
2-8-1雙成分汽液平衡系統 30
2-8-2雙成分汽液液平衡系統 30
2-8-3三成分汽液液平衡系統 31
2-9熱力學一致性測試 32
2-9-1 Gibbs-Duhem 方程式 32
2-9-2熱力學一致性測試法 33
2-9-3 熱力學一致性測試結果 36
2-10 Othmer-Tobias關聯式 36
第三章 相平衡計算 70
3-1汽液相平衡之計算 71
3-2汽液液相平衡之關聯計算 73
3-2-1雙成分汽液液平衡系統之關聯計算 76
3-2-2三成分汽液液平衡系統之預測計算 76
3-2-3不同版本UNIFAC預測三成分汽液液平衡系統 77
3-2-4三成分汽液液平衡系統之關聯計算 78
第四章 結論與建議 107
4-1 結論 107
4-2 建議 108
參考文獻 110
1. Prausnitz, J.M., R.N. Lichtenthaler, and E.G. Azevodo, “Molecular Thermodynamics of Fluid-Phase Equilibria,” 2nd edition, Prentice-Hall Inc., Englewood Cliffs: New Jersey (1986).
2. Han, S.J., H.M. Lin, and K.C. Chao, “Vapor-Liquid Equilibrium of Molecular Fluid Mixtures by Equation of State,” Chem. Eng. Sci., Vol. 43, pp. 2327-2367 (1988).
3. 朱新寶,朱凱,郭登峰,陳桂桂,”合成丙二醇甲醚丙酸酯用固體超強酸催化劑的研究”,化學反應工程與工藝,第廿一卷,第422-426頁 (2005)。
4. 湯卲海,戴斌,喬旭,崔咪芬,”合成丙二醇單甲醚丙酸酯的宏觀反應動力學”,過程工程學報,第7卷,第4期,第694-697頁 (2007)。
5. 戴斌,「丙二醇單甲醚丙酸酯合成反應動力學研究」,碩士論文,南京工業大學化學化工學院 (2005)。
6. 梁韶芙,「丙二醇甲醚酯非均相觸媒之合成反應動力行為研究」,碩士論文,國立臺灣科技大學化學工程所 (2010)。
7. Dohrn, R. and G. Brunner, “High-Pressure Fluid-Phase Equilibria: Experimental Methods and Systems Investigated (1988-1993),” Fluid Phase Equilibr., Vol. 106, pp. 213-282 (1995).
8. Nagahama, K., “VLE Measurements at Elevated Pressures for
Process Development,” Fluid Phase Equilibr., Vol. 116, pp. 361-372 (1996).
9. Christov, M. and R. Dohrn, “High-Pressure Fluid Phase Equilibria: Experimental Methods and Systems Investigated (1994-1999),” Fluid Phase Equilibr., Vol. 202, pp. 153-218 (2002).
10. Stievano, M. and N. Elvassore, “High-Pressure Density and Vapor-Liquid Equilibrium for the Binary Systems Carbon Dioxide - Ethanol, Carbon Dioxide - Acetone and Carbon Dioxide - Dichloromethane,” J. Supercrit. Fluid., Vol. 33, pp. 7-14 (2005).
11. 邱泓瑜,「臨界區附近混合物之汽液相帄衡性質研究」,博士論文,國立台灣科技大學化學工程所 (2008)。
12. Bender, J.P., A. Junges, E. Franceschi, F.C. Corazza, C. Dariva, J.V. Oliveira, and M.L. Corazza, “High-Pressure Cloud Point Data for the System Glycerol + Olive Oil + n-Butane + AOT,” Braz. J. Chem. Eng., Vol. 25, pp. 563-570 (2008).
13. Gomis, V., F. Ruiz, and J.C. Asensi, “The Application of Ultrasound in the Determination of Isobaric Vapour-Liquid-Liquid Equilibrium Data,” Fluid Phase Equilibr., Vol. 172, pp. 245-259 (2000).
14. Gomis, V., A. Font, R. Pedraza, and M.D. Saquete, “Isobaric Vapor-Liquid and Vapor-Liquid-Liquid Equilibrium Data for the System Water + Ethanol + Cyclohexane,” Fluid Phase Equilibr., Vol. 235, pp. 7-10 (2005).
15. Gomis, V., A. Font, and M.D. Saquete, “Vapour-Liquid-Liquid and Vapour-Liquid Equilibrium of the System Water + Ethanol +
Heptane at 101.3 kPa,” Fluid Phase Equilibr., Vol. 248, pp. 206-210 (2006).
16. Gomis, V., A. Font, R. Pedraza, and M.D. Saquete, “Isobaric Vapor-Liquid and Vapor-Liquid-Liquid Equilibrium Data for the Water - Ethanol - Hexane System,” Fluid Phase Equilibr., Vol. 259, pp. 66-70 (2007).
17. Gomis, V., A. Font, and M.D. Saquete, “Homogeneity of the Water - Ethanol - Toluene Azeotrope at 101.3 kPa,” Fluid Phase Equilibr., Vol. 266, pp. 8-13 (2008).
18. Gomis, V., A. Pequenin, and J.C. Asensi, “Isobaric Vapor-Liquid-Liquid Equilibrium and Vapor-Liquid Equilibrium for the System Water - Ethanol - 1,4-Dimethylbenzene at 101.3 kPa,” Fluid Phase Equilibr., Vol. 281, pp. 1-4 (2009).
19. Lladosa, E., J.B. Monton, M. Burguet, and J. de la Torre, “Isobaric (Vapour + Liquid + Liquid) Equilibrium Data for (di-n-Propyl Ether + n-Propyl Alcohol + Water) and (di-iso-Propyl Ether + Isopropyl Alcohol + Water) Systems at 100 kPa,” J. Chem. Thermodyn., Vol. 40, pp. 867-873 (2008).
20. Lee, H.-S., S.Y. Mun, and H. Lee, “High-Pressure Phase Equilibria of Binary and Ternary Mixtures Containing the Methyl-Substituted Butanols,” Fluid Phase Equilibr., Vol. 167, pp. 131-144 (2000).
21. Iwakabe, K. and H. Kosuge, “Isobaric Vapor-Liquid-Liquid Equilibria with a Newly Developed Still,” Fluid Phase Equilibr., Vol. 192, pp. 171-186 (2001).
22. van Zandijcke, F. and L. Verhoeye, “The Vapour-Liquid
Equilibrium of Ternary Systems with Limited Miscibility at Atmospheric Pressure,” J. Appl. Chem. Biotech., Vol. 24, pp. 709-729 (1974).
23. Laursen, T., P. Rasmussen, and S.I. Andersen, “VLE and VLLE Measurements of Dimethyl Ether Containing Systems,” J. Chem. Eng. Data, Vol. 47, pp. 198-202 (2002).
24. Kodama, D., T. Kimura, H. Tanaka, and M. Kato, “High Pressure Phase Equilibrium Properties for Ethane + 1-Butanol System at 313.15 K,” Fluid Phase Equilibr., Vol. 201, pp. 401-407 (2002).
25. Kodama, D., M. Ogawa, T. Kimura, H. Tanaka, and M. Kato, “High-Pressure Phase Equilibrium for Ethane + 2-Propanol at 308.15 K and 313.15 K,” J. Chem. Eng. Data, Vol. 47, pp. 916-918 (2002).
26. Kodama, D., T. Yagihashi, T. Hosoya, and M. Kato, “High-Pressure Vapor + Liquid Equilibrium for Ethylene + 2-Methyl-1-propanol,” J. Chem. Eng. Data, Vol. 54, pp. 1046-1048 (2009).
27. Haneda, A., T. Seki, D. Kodama, and M. Kato, “High-Pressure Phase Equilibrium for Ethylene + Methanol at 278.15 K and 283.65 K,” J. Chem. Eng. Data, Vol. 51, pp. 268-271 (2005).
28. Chopade, S.P., A.D. Dhale, A.M. Clark, C.W. Kiesling, L.K. Myrant, J.E. Jackson, and D.J. Miller, “Vapor-Liquid-Liquid Equilibrium (VLLE) and Vapor Pressure Data for the Systems 2-Methyl-1,3-Dioxolane (2MD) + Water and 2,4-Dimethyl-1,3-Dioxolane (24DMD) + Water,” J. Chem. Eng. Data, Vol. 48, pp. 44-47 (2002).
29. Horstmann, S., K. Fischer, and J. Gmehling, “Vapor + Liquid + Liquid Equilibria, Azeotropic, and Excess Enthalpy Data for the Binary System n-Undecane + Propionamide and Pure-Component Vapor Pressure and Density Data for Propionamide,” J. Chem. Eng. Data, Vol. 49, pp. 1494-1498 (2004).
30. Dias, L.M.B., E.J.M. Filipe, C. McCabe, and J.C.G. Calado, “Thermodynamics of Liquid (Xenon + Methane) Mixtures,” J. Phys. Chem. B, Vol. 108, pp. 7377-7381 (2004).
31. Chapoy, A., S. Mokraoui, A. Valtz, D. Richon, A.H. Mohammadi, and B. Tohidi, “Solubility Measurement and Modeling for the System Propane - Water from 277.62 to 368.16 K,” Fluid Phase Equilibr., Vol. 226, pp. 213-220 (2004).
32. Younis, O.A.D., D.W. Pritchard, and M.M. Anwar, “Experimental Isobaric Vapour-Liquid-Liquid Equilibrium Data for the Quaternary Systems Water (1) - Ethanol (2) - Acetone (3) - n-Butyl Acetate (4) and Water (1) - Ethanol (2) - Acetone (3) - Methyl Ethyl Ketone (4) and Their Partially Miscible-Constituent Ternaries,” Fluid Phase Equilibr., Vol. 251, pp. 149-160 (2007).
33. Renon, H. and J.M. Prausnitz, “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures,” AIChE J., Vol. 14, pp. 135-144 (1968).
34. Abrams, D.S. and J.M. Prausnitz, “Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems,” AIChE J., Vol. 21, pp. 116-128 (1975).
35. Soave, G., “Equilibrium Constants from a Modified Redlich-Kwong Equation of State,” Chem. Eng. Sci., Vol. 27, pp. 1197-1203 (1972).
36. Peng, D.-Y. and D.B. Robinson, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam., Vol. 15, pp. 59-64 (1976).
37. Patel, N.C. and A.S. Teja, “A New Cubic Equation of State for Fluids and Fluid Mixtures,” Chem. Eng. Sci., Vol. 37, pp. 463-473 (1982).
38. Fredenslund, A., J. Gmehling, and P. Rasmussen, “Vapor-Liquid Equilibria Using UNIFAC: A Group Contribution Method,” Elsevier Scientific Pub. Co.: Amsterdam (1977).
39. Magnussen, T., P. Rasmussen, and A. Fredenslund, “UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria,” Ind. Eng. Chem. Process Des. Dev., Vol. 20, pp. 331-339 (1981).
40. Larsen, B.L., P. Rasmussen, and A. Fredenslund, “A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing,” Ind. Eng. Chem. Res., Vol. 26, pp. 2274-2286 (1987).
41. Gmehling, J., J. Li, and M. Schiller, “A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties,” Ind. Eng. Chem. Res., Vol. 32, pp. 178-193 (1993).
42. Chiavone-Filho, O., P. Proust, and P. Rasmussen, “Vapor-Liquid Equilibria for Glycol Ether + Water Systems,” J. Chem. Eng. Data, Vol. 38, pp. 128-131 (1993).
43. Spencer, C.F. and R.P. Danner, “Improved Equation for Prediction of Saturated Liquid Density,” J. Chem. Eng. Data, Vol. 17, pp. 236-241 (1972).
44. Kojima, K., H. M. Moon, and K. Ochi, “Thermodynamic Consistency Test of Vapor-Liquid Equilibrium Data : Methanol-Water, Benzene-Cyclohexane and Ethyl Methyl Ketone-Water,” Fluid Phase Equilibr., Vol. 56, pp. 269-284 (1990).
45. Othmer, D. and P. Tobias, “Liquid-Liquid Extraction Data - The Line Correlation,” Ind. Eng. Chem., Vol. 34, pp. 693-696 (1942).
46. Hayden, J.G. and J.P. O'Connell, “A Generalized Method for Predicting Second Virial Coefficients,” Ind. Eng. Chem. Process Des. Dev., Vol. 14, pp. 209-216 (1975).
47. Britt, H.I. and R.H. Luecke, “The Estimation of Parameters in Nonlinear, Implicit Models,” Technometrics, Vol. 15, pp. 233-247 (1973).
48. 鄭如均,「含水、乙酸異丙酯、丙酸、甲醇之雙成分混合物恆壓汽液帄衡研究」,碩士論文,國立臺灣科技大學化學工程所 (2008)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊