|
[1] http://www.sensorprod.com/index.php [2] http://hospital.kingnet.com.tw [3] http://www.twhealth.org.tw [4] http://www.mmh.org.tw/davinci [5] http://www.apple.com/tw/ [6] http://www.shadowrobot.com/ [7] http://www.plattform-i40.de/I40/Navigation/EN/Home/home.html [8] https://www.microsoft.com/en-us/cloud-platform/internet-of-things [9] https://www.memsnet.org/mems/what_is.html [10] http://www.memx.com/technology.htm [11] J. Engel, J. Chen, & C. Liu, “Development of polyimide flexible tactile sensor skin,” Journal of Micromechanics and Microengineering, 13(3), pp. 359, 2003. [12] E. S. Hwang, J. H. Seo, & Y. J. Kim, “A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics,” Journal of microelectromechanical systems, 16(3), pp. 556-563, 2007. [13] H. Takahashi, A. Nakai, N. Thanh-Vinh, K. Matsumoto, & I. Shimoyama, “A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping,” Sensors and Actuators A: Physical, 199, pp. 43-48, 2013. [14] N. Thanh-Vinh, N. Binh-Khiem, H. Takahashi, K. Matsumoto, & I. Shimoyama, “High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers,” Sensors and Actuators A: Physical, 215, pp. 167-175, 2014. [15] H. K. Lee, J. Chung, S. I. Chang, & E. Yoon, “Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors,” Journal of Microelectromechanical Systems, 17(4), pp. 934-942, 2008. [16] Y. C. Liu, C. M. Sun, L. Y. Lin, M. H. Tsai, & W. Fang, “Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in,” Journal of Microelectromechanical Systems, 20(1), pp. 119-127, 2011. [17] R. Surapaneni, Q. Guo, Y. Xie, D. J. Young, & C. H. Mastrangelo, “A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes,” Journal of Micromechanics and Microengineering, 23(7), p. 075004, 2013. [18] D. Alveringh, R. A. Brookhuis, R. J. Wiegerink, & G. J. M. Krijnen, “A large range multi-axis capacitive force/torque sensor realized in a single SOI wafer,” IEEE Micro Electro Mechanical Systems, San Francisco, CA, pp. 680-683, 2014, January. [19] E. S. Kolesar, & C. S. Dyson, “Object imaging with a piezoelectric robotic tactile sensor,” Journal of Microelectromechanical Systems, 4(2), pp. 87-96, 1995. [20] C. Li, P. M. Wu, S. Lee, A. Gorton, M. J. Schulz, & C. H. Ahn, “Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer,” Journal of Microelectromechanical Systems, 17(2), pp. 334-341, 2008. [21] F. Maita, L. Maiolo, A. Minotti, A. Pecora, D. Ricci, G. Metta,... & G. Fortunato, “Ultraflexible tactile piezoelectric sensor based on low-temperature polycrystalline silicon thin-film transistor technology.” IEEE Sensors Journal, 15(7), 3819-3826, 2015. [22] Y. Hasegawa, M. Shikida, H. Sasaki, K. Itoigawa, & K. Sato, “An active tactile sensor for detecting mechanical characteristics of contacted objects,” Journal of micromechanics and microengineering, 16(8), pp. 1625, 2006. [23] S. Wattanasarn, K. Noda, K. Matsumoto, & I. Shimoyama, “3D flexible tactile sensor using electromagnetic induction coils,” IEEE Micro Electro Mechanical Systems, Paris, France, pp. 488-491 , 2012, January. [24] J. S. Heo, J. Y. Kim, & J. J. Lee, “Tactile sensors using the distributed optical fiber sensors,” IEEE ICST, Canada, Montreal, pp. 486-490, 2008, November. [25] L. Guo, G. S. Guvanasen, X. Liu, C. Tuthill, T. R. Nichols, & S. P. DeWeerth, “A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing,” IEEE transactions on biomedical circuits and systems, 7(1), pp. 1-10, 2013. [26] S. I. Yoon, & Y. J. Kim, “A flexible tactile sensor based on a thermoelectric device for simultaneous detection of contact heat and contact force,” Journal of micromechanics and microengineering, 20(10), p. 105017, 2010. [27] H. K. Lee, J. Chung, S. I. Chang, & E. Yoon, “Polymer tactile sensing array with a unit cell of multiple capacitors for three-axis contact force image construction,” IEEE Micro Electro Mechanical Systems, Hyogo, Japan, pp. 623-626, 2007, January. [28] M. Y. Cheng, X. H. Huang, C. W. Ma, & Y. J. Yang, “A flexible capacitive tactile sensing array with floating electrodes,” Journal of Micromechanics and Microengineering, 19(11), p. 115001, 2009. [29] J. Engel, J. Chen, Z. Fan, & C. Liu, “Polymer micromachined multimodal tactile sensors,” Sensors and Actuators A: physical, 117(1), pp. 50-61, 2005. [30] T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. Debaets, & H. Reichl, “Stretchable electronic systems,” IEEE EPTC, Singapore, pp. 271-276, 2006, December. [31] F. Axisa, F. Bossuyt, T. Vervust, & J. Vanfleteren, “Laser based fast prototyping methodology of producing stretchable and conformable electronic systems,” IEEE ESTC, London, United Kingdom, pp. 1387-1390, 2008, September. [32] K. Huang, & P. Peumans, “Stretchable silicon sensor networks for structural health monitoring,” International Society for Optics and Photonics In Smart Structures and Materials, San Diego, CA, pp. 617412-617412, 2006, March. [33] J. A. Rogers, T. Someya, & Y. Huang, “Materials and mechanics for stretchable electronics,” Science, 327(5973), pp. 1603-1607, 2010. [34] http://www.hdtglobal.com/ [35] http://urbanwearables.technology/ [36] W. L. Sung, W. C. Lai, C. C. Chen, K. Huang, & W. Fang, “Micro devices integration with large-area 2D chip-network using stretchable electroplating copper spring,” IEEE Micro Electro Mechanical Systems, San Francisco, CA, pp. 1135-1138, 2014, January. [37] http://digital.nls.uk/scientists/biographies/lord-kelvin/ [38] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Physical review, 94(1), pp. 42, 1954. [39] Y. Kanda, “A graphical representation of the piezoresistance coefficients in silicon,” IEEE Transactions on electron devices, 29(1), pp. 64-70, 1982. [40] A. Boukabache, P. Pons, G. Blasquez, & Z. Dibi, “Characterisation and modelling of the mismatch of TCRs and their effects on the drift of the offset voltage of piezoresistive pressure sensors,” Sensors and Actuators A: Physical, vol. 84, pp. 292-296, 2000. [41] Y. Kanda, “Piezoresistance effect of silicon,” Sensors and Actuators A: Physical, 28(2), pp. 83-91, 1991. [42] S. P. Timoshenko, & S. Woinowsky-Krieger, “Theory of plates and shells,” McGraw-hill, 1959. [43] K. Huang, R. Dinyari, G. Lanzara, J. Y. Kim, J. Feng, C. Vancura, & P. Peumans, “An approach to cost-effective, robust, large-area electronics using monolithic silicon,” IEEE IEDM, Washington, DC, pp. 217-220, 2007, December. [44] C. P. Chen, & M. H. Leipold, “Fracture toughness of silicon,” 1980. [45] F. Ebrahimi, & L. Kalwani, “Fracture anisotropy in silicon single crystal.” Materials Science and Engineering: A, 268(1), pp. 116-126, 1999. [46] http://www.cleanroom.byu.edu/OxideTimeCalc.phtml [47] Y. Okada, & Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K.” Journal of applied physics, 56(2), pp. 314-320, 1984. [48] M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, & J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process.” Applied physics letters, 82(8), pp. 1152-1154, 2003.
|