|
REFERENCE: 1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61(2):69-90. 2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 36(5):E359-86. 3. Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008; 371(9625):1695-709. 4. Kawakita D, Matsuo K. Alcohol and head and neck cancer. Cancer Metastasis Rev. 2017; 36(3):425-34. 5. Jethwa AR, Khariwala SS. Tobacco-related carcinogenesis in head and neck cancer. Cancer Metastasis Rev. 2017; 36(3):411-23. 6. Mayne ST, Morse DE, Winn DM. Cancers of the oral cavity and pharynx. In Cancer Epidemiology and Prevention; Schottenfeld D, Fraumeni FJ.; Oxford University Press: Oxford, UK, 2006. 7. Chuang SL, Su WW, Chen SL, Yen AM, Wang CP, Fann JC, et a;. Population-based screening program for reducing oral cancer mortality in 2,334,299 Taiwanese cigarette smokers and/or betel quid chewers. Cancer. 2017; 123(9):1597-609. 8. Wu YH, Yen CJ, Hsiao JR, Ou CY, Huang JS, Wong Ty, et al. A comprehensive analysis on the association between tobacco-free betel quid and risk of head and neck cancer in Taiwanese men. PLoS One. 2016; 11(10):e0164937. 9. Health promotion administration ministry of health and welfare, Taiwan. Cancer Registry Annual Report, 2015, Taiwan. https://www.hpa.gov.tw/Pages/Detail.aspx? nodeid=269&pid=8084 10. Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008; 359(11):1143-54. 11. Cooper JS, Zhang Q, Pajak TF, Forastiere AA, Jacobs J, Saxman SB, et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 2012; 84(5):1198- 205. 12. D`cruz A, Lin T, Anand AK, Atmakusuma D, Calaguas MJ, Chitapanarux I, et al. Consensus recommendations for the management of head and neck cancer in Asia countries: a review of international guidelines. Oral Oncol. 2013; 49(9):872-7. 13. Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefebvre JL, Greiner RH, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J. Med 2004; 350(19):1945-52. 14. Gregoire V, Langendijk JA, Nuyts S. Advances in radiotherapy for head and neck cancer. J Clin Oncol. 2015; 33(29):3277-84. 15. Forastiere AA, Zhang Q, Weber RS, Maor MH, Goepfert H, Pajak TF, et al. Long-term results of RTOG 91-11: a comparison of three nonsurgical treatment strategies to preserve the larynx in patients with locally advanced larynx cancer. J Clin Oncol. 2013; 31(7):845-52. 16. Chinn SB, Myers JN. Oral cavity carcinoma: current management, controversies, and future directions. J Clin Oncol. 2015; 33(29):3269-76. 17. Nguyen-Tan PS, Zhang Q, Ang KK, Weber RS, Rosenthal DI, Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: long-term report of efficacy and toxicity. J Clin Oncol. 2014; 32(34): 3858-66. 18. Szturz P, Wouters K, Kiyota N, Prabhash K, Noronha V, Castro A, et al. Weekly low-dose versus three-weekly high-dose cisplatin for concurrent chemoradiation in locoregionally advanced non-nasopharyngeal head and neck cancer: a systemic review and meta-analysis of aggregate data. Oncologist. 2017; 22(9):1056-66. 19. Iyer NG, Tan DS, Tan VK, Wang W, Hwang J, Tan NC, et al. Randomized trial comparing surgery and adjuvant radiotherapy versus concurrent chemoradiotherapy in patients with advanced, nonmetastatic squamous cell carcinoma of the head and neck: 10-year update and subset analysis. Cancer. 2015; 121(10):1599-607. 20. Xiang M, Holsinger FC, Colevas AD, Chen MM, Le QT, Beadle BM. Survival of patients with head and neck caner treated with definitive radiotherapy and concurrent cisplatin or concurrent cetuximab: a surveillance, epidemiology, and end results – medicare analysis. Cancer. 2018 oct 17. Doi:10.1002/cncr.31708. 21. Lala M, Chirovsky D, Cheng JD, Mayawala K. Clinical outcomes with therapies for previously treated recurrent/metastatic head-and-neck squamous cell carcinoma (R/M HNSCC): a systemic literature review. Oral Oncol. 2018; 84:108-20. 22. Sacco AG, Cohen EE. Current treatment options for recurrent or metastatic head and neck squamous cell carcinoma. J Clin Oncol. 2015; 33(29):3305-13. 23. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008; 359 (11):1116-27. 24. Trigos AS, Pearson RB, Papenfuss AT, Goode DL. How the evolution of multicellularity set the stage for cancer. Br J Cancer. 2018; 118(2):145-52. 25. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70. 26. Hanahan D, Weinberg RA. The hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-74. 27. Opydo-Chanek M, Gonzalo O, Marzo I. Multifaceted anticancer activity of BH3 mimetics: current evidence and future prospects. Biochem Pharmacol. 2017; 136:12-23. 28. Ma J, Waxman DJ. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther. 2008; 7(12):3670-84. 29. Brown JS, O`carrigan, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7(1):20-37. 30. Sasahira T, Kirita T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int J Mol Sci. 2018; 19:2413. 31. Horne SD, Pollick SA, Heng HHQ. Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer. 2015; 136(9):2012-21. 32. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017; 7(5):1016-36. 33. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018; 25(3):486-541. 34. Inthrani RI, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochimica et Biophysica Acta. 2011; 1807:735-45. 35. Baig S, Seevasant I, Mohammad J, Mukheem A, Huri HZ, Kamarul T. Potential of apoptotic pathway-targeted cancer therapeutic research: where do we stand? Cell Death Dis. 2016; 7:e2058. 36. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012; 45(6):487-98. 37. Cotter TG. Apoptosis and cancer: the genesis of a research filed. Nat Rev Cancer. 2009; 9(7):501-7. 38. Fulda S, DeBatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006; 25(34):4795-811. 39. Liu JJ, Lin M, Yu JY, Lu B, Bao JK. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett. 2011; 300(2):105-14. 40. Fox JL, MacFarlane M. Targeting cell death signaling in cancer: minimizing “collateral damage”. Br J Cancer. 2016;115(1):5-11. 41.Koff JL, Ramachandiran S, Bernal-,Mizrachi L. A time to kill: targeting apoptosis in cancer. Int J Mol Sci. 2015; 16(2):1942-55. 42.Ashkenazi A, Fairbrother WJ, Leversom JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017; 16(4):273-84. 43. Letai AG. Diagnosing and exploiting cancer`s addiction to blocks in apoptosis. Nat Rev Cancer. 2008; 8(2):121-32. 44. Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015; 35 suppl:S79-S103. 45. Fuchs Y, Steller H. Liver to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015; 16(6):329-44. 46. Fulda S. Caspase-8 in cancer biology and therapy. Cancer Lett. 2009; 281(2):128-33. 47. Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol. 2014; 90(3):200-19. 48. Derakhshan A, Chen Z, Van Waes C. Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin Cancer Res. 2016; 23(6):1379-87. 49. Gibson CJ, Davids MS. BCL-2 antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin Cancer Res. 2015; 21(22):5021-9. 50. Li-Weber M. Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett. 2013; 332(2):304-12. 51. Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis. 2015; 20(12):1531-62. 52. Tewary P. Gunatilaka AAL, Sayers TJ. Using natural products to promote caspase-8 dependent cancer cell death. Cancer Immunol Immunother. 2017; 66(2):223-31. 53. Wenzel ES, Singh ATK. Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo. 2018; 32(1):1-5. 54. Yasutis K, Kozminski K. Cell cycle checkpoint regulators reach a zillion. Cell Cycle. 2013; 12(10):1501-9. 55. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009; 9(3):153-66. 56. Lobrich M, Jeggo PA. The impact of negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer. 2007; 7(11):861-9. 57. Bertoli C, Skotheim JM, de Bruin RAM. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013; 14(8): 518-28. 58. Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009; 9(11):785-97. 59. El-Deiry WS. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 2016; 76(18):1169-74. 60. Foijer F, te Riele H. Check, double check: the G2 barrier to cancer. Cell Cycle. 2006; 5(8):831-6. 61. Bucher N, Britten CD. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br. J Cancer. 2008; 98(3):523-8. 62. Schmit TL, Ahmad N. Regulation of mitosis via mitotic kinases: new opportunities for cancer management. Mol Cancer Ther. 2007; 6(7):1920-31. 63. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017; 17(2):93-115. 64. Mishra R. Cell cycle-regulatory cyclins and their deregulation in oral cancer. Oral Oncol. 2013; 49 (6):475-81. 65. Lapenna S, Giodano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov. 2009; 8(7):547-66. 66. Mills CC, Kolb EA, Sampson VB. Developent of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy. Cancer Res. 2018; 78(2):320-5. 67. Geol S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol. 2018; 28(11):911-25. 68. Cisconti R, Monica RD, Grieco D. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J Exp Clin Cancer Res. 2016; 35(1): 153. 69. Newell M, Baker K, Postovit LM, Field CJ. A critical review on the effect of docosahexaenoic acid (DHA) on cancer cell cycle progression. Int J Mol Sci. 2017; 18(8). 70. Rengarajan T, Rajendran P, Nandakumar N, Balasubramanian MP, Nishigaki I. Cancer preventive efficacy of marine carotenoid fucoxanthin: cell cycle arrest and apoptosis. Nutrients. 2013; 5(12):4978-89. 71. Jahanafrooz Z, Motamed N, Rinner B, Mokhtarzade A, Baradaran B. Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNA regulator. Life Sci. 2018; 213:236-47. 72. Zhang R, Wang Y, Li J, Jin H, Song S, Huang C. The Chinese hern isolate yuanhuacine (YHL-14) induces G2/M arrest in human cancer cells by upregulateing p21 protein expression through a p53 protein-independent cascade. J Biol Chem 2014; 289(10):6394-403. 73. Jo EH, Kim SH, Ra JC, Kim SR, Cho SD, Jung JW, et al. Chemopreventive properties of the ethanol extract of Chinese licorice (Glycyrrhiza uralensis) root: induction of apoptosis and G1 cell cycle arrest in MCF-7 human breast cancer cells. Cancer Lett. 2005; 230(2):239-47. 74. Nieto AM, Huang RYJ, Jackson RA, Thiery JP. EMT:2016. Cell. 2016; 166(1):21-45. 75. Thiery JP, Acloque H, Huang RYJ, Nieto NA. Epithelial-mesenchymal transition in development and disease. Cell. 2009; 139(5):871-90. 76. Polyak K, Weinberg RA. Transition between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009; 9(4):265-73. 77. Ribatti D. Epithelial-mesenchymal transition in morphogenesis, cancer progression and angiogenesis. Exp Cell Res. 2017; 353(1):1-5. 78. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97-110. 79. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018; 18(2):128-34. 80. Pietila M, Ivaska J, Mani SA. Whom toblame for metastasis, the epithelial-mesenchymal transition or the microenvironment? Cancer lett. 2016; 380(1):359-68. 81. Gao D, Vahdat L, Wong S, Chang JC, Mittal V. Microenvironment regulation of epithelial-mesenchymal transitions in cancer. Cancer res. 2012; 72(19):4883-9. 82. Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res. 2014; 21(5):962-8. 83. Bedi U, Mishra VK, Wasilewski D, Scheel C, Johnsen SA. Epigenetic plasticity: a central regulator of epithelial-mesenchymal transition in cancer. Oncotarget. 2014; 5(8):2016-29. 84. Peinado H, Olmeda D, Cano A. Snail, ZEB and bHLH factors in tumor progression: an alliance against the epithelial phenotype? Nat Rev Cancer.2007; 7(6):415-28. 85. Ye X, Weinberg RA. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends cell biol. 2015; 25(11):675-86. 86. Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012; 22(5-6):396-403. 87. Chang JT, Mani SA. Sheep, wolf, or werewolf: cancer stem cells and the epithelial-mesenchymal transition. Cancer Lett. 2013; 341(1):16-23. 88. Ishikawa T. Cancer stem cells and epithelial-mesenchymal transition: novel therapeutic targets for cancer. Pathol Int. 2016; 66(11):601-8. 89. Chen C, Zimmermann M, Tinhofer I, Kaufmann AM, Albers AE. epithelial-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Lett. 2013; 338(1):47-56. 90. Mallini P, Lennard T, Kirby J, Meeson A. Epithelial-to-mesenchymal transition: what is the impact on breast cancer stem cells and drug resistance. Cancer Treat Rev. 2014; 40(3):341-8. 91. Marie-Egyptienne DT, Lohse I, Hill RP. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett. 2013; 341(1):63-72. 92. Deng J, Wang L, Chen H, Hao J, Ni J, Chang L, et al. Targeting epithelial-to-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer. Oncotarget. 2016; 7(34):55771-88. 93. Chung CH, Parker JS, Ely K, Carter J, Yi Y, et al. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-κB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 2006; 66(16):8210-8. 94. Kim CW, Hwang KA, Choi KC. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-to-mesenchymal transition, migration, and invasion of malignant cancer cells. Phytomedicine. 2016; 23(14):1787-96. 95. Way TD, Huang JT, Chou CH, Huang CH, Yang MH, Ho CT. Emodin represses TWIST1-induced epithelial-to-mesenchymal transition cells by inhibiting the β-catenin and Akt pathways. Eur J Cancer. 2014; 50(2):366-78. 96. Liu YM, Liu YK, Huang PI, Tsai TH, Chen YJ. Antrodia cinnamomea mycelial fermentation broth inhibits the epithelial-to-mesenchymal transition of human esophageal adenocarcinoma cancer cells. Food Chem Toxicol. 2018; 119:380-6. 97. Akhtar N, Syed DN, Lall RK, Mirza B, Mukhtar H. Targeting epithelial to mesenchymal transition in prostate cancer by a novel compound, plectranthoic acid, isolated from Ficus microcarpa. Mol Carcinog. 2018; 57(5):653-63. 98. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidenced-based clinical guidelines. Cancer. 2005; 104(6):1129-37. 99. Bolus NE. Basic review of radiation biology and terminology. J Nucl Med Technol. 2017; 45(4):259-64. 100. Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W, et al. Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br J Radiol. 2014; 87(1035):20130715. 101. Kerns SL, Chung KH, Hall W, Werner Z, Chen Y, Ostrer H, et al. Radiation biology and oncology in the genomic era. Br J Radiol. 2018; 91(1091):20170949. 102. Harrington K, Jankowska P, Hingoran M. Molecular biology for the radiation oncologist: the 5Rs of radiobiology meet the hallmarks of cancer. Clin Oncol (R Coll Radiol). 2007; 19(8):561-71. 103.Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 2008; 8(6):425-37. 104. Good JS, Harrington KJ. The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiobiology. Clin Oncol (R Coll Radiol). 2013; 25(10):569-77. 105. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011; 11(4):239-53. 106. Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4R`s of radibiology revisited. Stem Cell. 2010; 28(4):639-48. 107. Teid PA, Wilson P, Li Y, Marcu LG, Bezak E. Curret understanding of cancer stem cells: review of their radiobiology and role in head and neck cancers. Head Neck. 2017; 39(9):1920-32. 108. Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, et al. Cancer stem cells and signaling pathways in radioresistance. Oncotarget. 2016; 7(10):11002-17. 109. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008; 8(7):545-54. 110. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumor microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015; 15(7):409-25. 111. Yin Z, Li C, Wang J, Xue L. Myeloid-derived suppressor cells: roles in the tumor microenvironment and tumor radiotherapy. Int J Cancer. 2018; Jul 11. Dio:10.1002/ijc.31744. 112. Yamamoto VN, Thylur DS, Bauschard M, Schmale I, Sinha UK. Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol. 2016; 63:44-51. 113. Perri F, Pacelli R, Scarpati GDV, Cella L, Giuliano M, Caponigro F, et al. Radioresistance in head and neck squamous cell carcinoma: biologic bases and therapeutic implications. Head Neck. 2015; 37(5):763-70. 114. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009; 461(7267):1071-8. 115. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012; 481(7381):287-94. 116. Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 2016; 16(1):20-33. 117. Giglia-Mari G, Zotter A, Vermeulen W. DNA damage response. Cold Spring Harb Perspect Biol. 2011; 3(1):a000745. 118. Magnander K, Elmroth K. Biological consequences of formation and repair of complex DNA damage. Cancer Lett. 2012; 327(1-2):90-6. 119. Darzynkiewics Z, Traganos F, Wlodkowic D. Impaied DNA damage response – an Achilles` heel sensitizing cancer to chemotherapy and radiotherapy. Eur J Pharmacol. 2009; 625(1-3):143-50. 120. Carrassa L, Damia G. DNA damage response inhibitors: mechanisms and potential applications in cancer therapy. Cancer Treat Rev. 2017; 60:139-51. 121. Lin AB, McNeely SC, Beckmann RP. Achieving precision death with cell-cycle inhibitors that target DNA replication and repair. Clin Cancer Res. 2017; 23(13):3232-40. 122. Hurley PJ, Bunz F. ATM and ATR, components of an integrated circuit. Cell Cycle. 2007; 6(4):414-7. 123. Morgan MA, Lawrance TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res. 2015; 21(13):2898-904. 124. Dillon MT, Good JS, Harrington KJ. Selective targeting of the G2/M cell cycle checkpoint to improve the therapeutic index of radiotherapy. Clin Oncol (R Coll Radiol). 2014; 26(5):257-65. 125. O`connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015; 60(4):547-60. 126. Sakthivel KM, ariharan S. Regulatory players of DNA damage repair mechanisms: role in cancer chemoresistance. Biomed Pharmacother. 2017; 93:1238-45. 127. Kareva I, Waxman DJ, Klement GL. Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. Cancer Lett. 2015; 358(2):100-6. 128. Lambrescu I, FicaS, Martins D, Spada F, Cella C, Bertani E, et al. Metronomic and metronomic-like therapies in neuroendocrine tumors – rationale and clinical perspectives. Cancer Treat Rev. 2017; 55:46-56. 129. Gnoni A, Silvestris N, Licchetta A Santini D, Scartozzi M, Ria R, et al. Metronomic chemotherapy from rationale to clinical studies: a dream or reality ? Crit Rev Oncol Hematol. 2015; 95(1):46-61. 130. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004; 4(6):423-36. 131. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target angiogenesis in mice. J Clin Invest. 2000; 105(8):1045-7. 132. Panel N, Adenis A, Bocci G. Cyclophosphamide-based metronomic chemotherapy: after 10 years of experience, where do we stand and where are we going? Crit Rev Oncol Hematol. 2012; 82(1):40-50. 133. Vives M, Ginesta MM, Gracova K, Graupera M, Casanovas O, Capella G, et al. Metronomic chemotherapy following maximum tolerated dose is an effective anti-tumor therapy affecting angiogenesis, tumor dissemination and cancer stem cells. Int J Cancer. 213; 133(10):2464-72. 134. Bocci G, Fioravanti A, Orandi P, Di Desidero T, Natale G, Fanelli G, et al. Metronomic ceramide analogue inhibit antiangiogenesis in pancreatic cancer through up-regulation of caveolin-1 and thrombospondin-1 and down-regulation of cyclin D1. Neoplasia. 2012; 14(9):833-45. 135. Ma J, Waxman DJ. Modulation of the antitumor activity of metronomic cyclophosphamide by the angiogenesis inhibitor axitinib. Mol Cancer Ther. 2008; 7(1):79-89. 136. Banissi C, Ghiringhelli F, Chen L, Carpentier AF. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother. 2009; 58(10):1627-34. 137. Klement G, Huang P, Bayer B, Green SK, Man S, Bohlen P, et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGF-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res. 2002; 8(1):221-32. 138. Folkins C, Man S, Xu P, ShakedY, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007; 67(8):3560-4. 139. Lien K, Georgsdottir S, Sivanathan L, Chan K, Emmenegger U. Low-dose metronomic chemotherapy: a systematic literature analysis. Eur J Cancer. 2013; 49(16):3387-95. 140. Cazzaniga ME, Dionisio MR, Riva F. Metronomic chemotherapy for advanced breast cancer patients. Cancer Lett. 2017; 400:252-8. 141. Romiti A, Falcone R, Roberta M, Marchetti P. Tackling pancreatic cancer with metronomic chemotherapy. Cancer Lett. 2017; 394;88-95. 142. Woo IS, Jung YH. Metronomic chemotherapy in metastatic colorectal cancer. Cancer Lett. 2017; 400:319-24. 143. De Felice F, Benevento I, Musella A, Musio D, Tombolini V. Metronomic chemotherapy in head and neck cancer. Cancer Lett. 2017; 400:219-22. 144. Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 2018; 19(11). pii:E3533. 145. Kinghorn AD, DE Blanco EJ, Lucas DM, Radotondraibe HL, Orjala J, Soejarto DD, et al. Discover of anticancer agents of diverse natural origin. Anticancer res. 2016; 36(11):5623-37. 146. Liu J, Wang S, Zhang Y, Fan HT, Lin HS. Traditional Chinese medicine and cancer: history, present situation, and development. Thorac Cancer. 2015; 6(5):561-9. 147. Bladodatski A, Yatsunskaya M, Mikhailova V, Tiasto V, Kagansky A, Katanaev VL. Medicinal mushrooms as an attractive new source of naturalcompounds for future cancer therapy. Oncotarget. 2018; 9(49):29259-74. 148. Wang YH, Feng L, Piao B, Zhang P. Review on research about traditional Chinese medicine in cancer stem cell. Evid Based Complement Alternat Med. 2017; 2017: 4505194. 149. Lin WF, Lu JY. Cheng BB. Ling CQ. Progression in research on the effects of traditional Chinese medicine on the tumor microenvironment. J Integr Med. 2017; 15(4):282-7. 150. Zhu L, Li L, Li Y, Wang J, Wang Q. Chinese herbal medicine as an adjunctive therapy for breast cancer: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2016; 2016:9469276. 151. Liao YH, Lin CC, Lai HC, Chiang JH, Lin JG, Li TC. Adjunctive traditional Chinese medicine therapy improves survival for liver cancer patients. Liver Int. 2015; 35(12):2595-602. 152. Li SG, Chen HY, Ou-Yang CS, Wang XX, Yang ZJ, Tong Y, et al. The efficacy of Chinese herbalmedicine as an adjunctive therapy for advanced non-small cell lung cancer: a systematic review and meta-analysis. PLoS. 2016; 8(2):e57604. 153. Chen X, Deng L, Jiang X, WuT. Chinese herbal medicine for oesophageal cancer. Cochrane Database Syst Rev. 2016; 22(1):CD004520. 154. Ng TB, Wang HX. Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol. 2005;57(12):1509-19. 155. Russel R, Peterson M. Cordyceps – a traditional Chinese medicine and another fungal therapeutic biofactory ? Phytochemistry. 2008; 69(7): 1469-95. 156. Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complement Alternat Med. 2015; 2015:575063. 157. Zhou X, Gong Z, Su Y, in J, Tang K. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol. 2009; 61(3):279-91. 158. Yue K, Te M, Zhou Z, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2013; 65(4):474-93. 159. Nakamura K, Shinozuka K, Yoshikawa N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J Pharmacol Sci. 2015; 127(1):53-6. 160. Hong T, Zhang M, Fan J. Cordyceps sinensis (a traditional Chinese medicine) for kidney transplant recipients. Cochrane Database Syst Rev. 2015; 12(10):CD009698. 161. Li SP, Zhang GH, Zeng Q, Huang ZG, Wang YT, Dong TT, et al. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine. 2006; 13(6):428-33. 162. Qi W, Zhang Y, Yan YB, Lei W, Wu ZX, Liu N, et al. The protective effect of cordymin, a prptide purified from the medicinal mushroom cordyceps sinensis, on diabetic osteopenia in alloxan-induced diabetic rats. Evid Based Complement Alternat Med. 2013; 2013:985636. 163. Zhang K, Yu Y, Zhang Z, Ding Y, Dai X, Li Y. Effect of polysaccharide from cultured cordyceps sinensis on immune function and anti-oxidation activity of mice exposed to 60Co. Int Immunopharmacol. 2011; 11(12):2251-7. 164. Zhou X, Lou L, Dressel W, Shadier G, Krumbiegel D, Schimidtke P, et al. Cordycepin is an immunoregulatory active ingredient of Cordycepin sinensis. Am J Chin Med. 2008;36(5):967-80. 165. Tuli HS, Sharma AK, Sandhu SS, Kashyap D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 2013; 93(23):863-9. 166. Wang XA, Xiang SS, Li HF, Wu XS, Li ML, Shu YJ, et al. Cordycepin nduces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules. 2014; 19(8):11350-65. 167. Hoo JC, Hwang JH, Jo E, Kim YR, Kim DJ, Lee KB, et al. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget. 2017; 8(7):12211-24. 168. Lee SY, Debnath T, Kim SK, Lim BO. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cell HT-29. Food Chem Toxicol. 2013; 60:439-47. 169. Chaicharoenaudomrung N, Jaroonwitchawan T, Noisa P. Cordycepin induces apoptotic cell deah of human brain cancer through the modulation of autophagy. Toxicol in Vitro. 2018; 46:113-21. 170. Yu X, Ling J, Liu X, Guo S, Lin Y, Liu X, et al. Cordycepin induces autophagy-mediated c-FLIPL degradation and leads to apoptosis in human non-small cell lung cancer cells. Oncotarget. 2017; 8(4):6691-9. 171. Lee SJ, Kim SK, Choi WS, Kim WJ, Moon SK. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch Biochem Biophy. 2009; 490(2):103-9. 172. Bi Y, Li H, Yi D, Bai Y, Zhong S, Liu Q, et al. β-catenin contributes to cordycepin-induced MGMT inhibition and reduction of temozolomide resistance in glioma cells by increasing intracellular reactive oxygen species. Cancer Lett. 2018; 435:66-79. 173. Lee SJ, Moon GS, Jung KH, Kim WJ, Moon SK. c-Jun N-terminal kinase 1 is required for cordycepin-mediaated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells. Food Chem Taxicol. 2010; 48(1):277-83. 174. Wang CW, Lee BH, Tai CJ. The inhibition of cordycepin on cancer stemness in TGF-beta induced chemo-resistant ovarian cancer cell. Oncotarget. 2017; 8(67):111912-21. 175. Zhang P, Huang C, Fu C, Tian Y, Hu Y, Wang B, et al. Cordycepin (3`-deoxyadenosine) suppressed HMGA2, Twist1 and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. Oncotarget. 2015; 6(12):9834-53. 176. Kubo E, Yoshikawa N, Kunitomo M, KagotaS, Shinozuka K, Nakamura K. Inhibitory effect of Cordycepin sinensis on experimental hepatic metastasis of melanoma by suppressing tumor cells invasion. Anticancer Res. 2010; 30(9):3429-34. 177. Wu WC, Hsiao JR, Lian YY, Lin CY, Huang BM. The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother Pharmacol. 2007; 60(1):103-11. 178. Hsu PY, Lin YH, Yeh EL, Lo HC, Hsu TH, Su CC. Cordcyepin and a preparation from Crodyceps militaris inhibit malignant transformation and proliferation by decreasing ECFR and IL-17RA signaling in murine oral cancer model. Oncotarget. 2017; 8(55):93712-28. 179. Chen YH, Wang JP, Pan BS, Mu YF, Lain MS, So EC, et al. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells. Onco Target Ther. 2013; 6:983-8. 180. Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016; 91(3):386-96. 181. Tian Y, Lin J, Tian Y, Zhang G, Zeng X, Zheng R, et al. Efficacy and safety of anti-EGFR agents administered concurrently with standard therapies for patients with head and neck squamous cell carcinoma: a systemic review and meta-analysis of randomized controlled trials. Int J Cancer. 2018; 142(11):2198-206. 182. Yoon SY, Park SJ, Park YJ. The anticancer properties of cordycepin and their underlying mechanisms. Int J Mol Sci. 2018;19(10). Pii:E3027. 183. Lee HH, Kim SO, Kim GY, Moon SK, Lim WJ, Jeong YK, et al. Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells. Environ Toxicol Pharmacol. 2014; 38(1):239-50. 184. Chen YH, Wang JY, Pan BS, Mu YF, Lai MS, So EC, et al. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells. Onco Targets Ther. 2013, 6, 983-998. 185. Liu KH, Tsai YT, Chin SY, Lee WR, Chen YC, Shen SC. Hypoxia stimulates the epithelial-to-mesenchymal transition in lung cancer cells through accumulation of nuclear β-catenin. Anticancer res. 2018; 38(11):6299-308. 186. Prislei S, Martinelli E, Zannoni GF, Petrillo M, Filppetti F, Mariani M, et al. Role and prognostic significance of the epithelial-mesenchymal transition factor ZEB2 in ovarian cancer. Oncotarget. 2015; 6(22):18966-79. 187. Maciaczyk D, Picard D, Zhao L, Koch K, Herrera-Rios D, Li G, et al. CBF1 is clinically prognostic and serves as a target to block cellular invasion and chemoresistance of EMT-like glioblastoma cells. Br J Cancer. 2017; 117(1):102-12. 188. Smith A, Teknos TN, Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 2013; 49(4) :287-92. 189. Bharti R, Dey G, Mandal M. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Lett. 2016; 375 (1):51-61. 190. Zhang P, Huang C, Fu C, Tian Y, Wang B, Strasner A, et al. Cordycepin (3’-deoxyadenosine) suppressed HMGA2, Twist1, and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. Oncotarget 2015; 6: 9834-9853. 191. Jeong JW, Jin CY, Park C, Han MH, Kim GY, Moon SK, et al. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int J Oncol. 2012; 40(5):1697-704. 192. Lee EJ, Kim WJ, Moon SK. Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother res. 2010; 24(12):1755-61. 193. Wang CW, Hsu WH, Tai CJ. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells. Oncotarget. 2017; 8(2):3049-58. 194. Wu WD, Hu ZM, Shang MJ, Zhao DJ, Zhang CW, Hong DF, et al. Cordycepin down-regulates multiple drug resistant (MDR)/HIF-1α through regulating AMPK/mTORC1 signaling in GBC-SD gallbladder cancer cells. Int J Mol Sci. 2014; 15(7):12778-90. 195. Kang FC, Chen PJ, Pan BS, Lai YC, Chen YC, Huang BM. Apoptotic effect of cordycepin combined with cisplatin and/or paclitaxel on MA-10 mouse leydig cells. Onco Targets Ther. 2015; 8:2345-60. 196. Wang CW, Lee BH, Tai CJ. The inhibition of cordycepin on cancer stemness in TGF-beta induced chemo-resistant ovarian cancer cell. Oncotarget. 2017; 8(67):111912-921. 197. Cho SH, Kang IC. The inhibitory effect of cordycepin on the proliferation of cisplatin-resistant A549 lung cancer cells. Biochem Biophys Res Commun. 2018; 498(3):431-6. 198. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004; 59(4):928-42. 199. Stadler J, Richly H. Regulation of DNA repair mechanisms: how the chromatin environment regulates the DA damage response. Int J Mol Sci. 2017; 18(8):1715. 200. Wang H, Wang H, Powell SN, Iliakis G, Wang Y. ATR affecting cell radiosensitivity is depend on homologous recombination repair but independent of nonhomologous end joining. Cancer Res. 2004; 64(19): 7139-43. 201. Sorensen CS, Hansan LT, Dziegielewski J, Syljuasen RG, Lundin C, Barker J, et al. The cell-cycle checkpoints kinase Chk1 is required for mammalian homologous recombination. Nat Cell Biol. 2005; 7(2):195-201. 202. Qiu Z, Leinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol. 2018; 126(3):450-64. 203. Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem. 2003;278(17):14806-11. 204. Hurley PJ, Bunz F. ATM and ATR, components of an integrated circuit. Cell Cycle. 2007;6(4):414-7. 205. Jazayeri A, Falck J, Lukas C, Bartek J, Smith GS, Lukas J, et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-stand break. Nat Cell Biol. 2006;8(21):37-45. 206. Gottifredi V, Prives C. The S phase checkpoint: when the crowd meets at the fork. Semin Cell Dev Biol. 2005;16(3):355-68. 207. Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene. 2008;27(28):3977-85. 208. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol. 2005;7(2):195-201. 209. Wang H, Wang H, Powell SN, Illiakis G, Wang Y. ATR affecting cell radiosensitivity is dependent on homologous recombination repair but independent of nonhomologous end joining. Cancer Res. 2004;64(19):7139-43. 210.Chan DA, Giaccia AJ. Harnessing synthetic lethal interaction in anticancer drug discovery. Nat Rev Drug Discov. 2011; 10(5):351-64. 211. Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C, Petermann E, et al. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood. 2016;127(5):582-95. 212. Palii SS, Cui Y, Innes CL, Paules RS. Dissecting cellular responses to irradiation via targeted disruptions of the ATM-CHK1-PP2A circuit. Cell Cycle. 2013;12(7):1105-18. 213. Seong da B, Hong S, Muthusami S, Kim WD, Yu JR, Park WY. Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur. J. Pharmacol. 2016; 771:77-83. 214. Wang XA, Xiang SS, Li HF, Wu XS, Li ML, Shu YJ, et al. Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules. 2014;19:11350-65. 215. Hwang IH, Oh SY, Jang HJ, Jo E, Joo JC, Lee KB, et al. Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression. PLoS One. 2017;12(10):e0186489. 216. Zhang Y, Zhang XX, Yuan RY, Ren T, Shao ZY, Wang HF, et al. Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth in vivo. Onco Targets Ther. 2018;11:4479-90. 217. Venugopal B, Awada A, Evans TR, Dueland S, Hendlisz A, Rasch W, et al. A first-in-human phase I and pharmacokinetic study of CP-4126 (CO-101), a nucleoside analogue, in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2015;76:785-792. 218.Magin S, Papaioannou M, Saha J, Staudt C, Iliakis G. Inhibition of homologous recombination and promotion of mutagenic repair of DNA double-strand breaks underpins arabinoside-nucleoside analogue radiosensitization. Mol Cancer Ther. 2015;16:1424-1433. 219.Wang Q, Liu X, Wang Q, Zhang Y, Jiang J, Guo X, et al. FNC, a novel nucleoside analogue inhibits cell proliferation and tumor growth in a variety of human cancer cells. Biochem Pharmacol. 2011;81:848-855. 220.Lech-Maranda E, Korycka A, Robak T. Clofarabine as a novel nucleoside analogue approved to treat patients with hematological malignancies:: mechanism of action and clinical activity. Mini Rev Med Chem. 2009;9:805-812. 221.Jordheim LP. Further evidences for pharmacogenetic assessment of nucleoside analogue-treated patients. Leuk Res. 2011;35:429-430. 222.Ewald B, Sampath D, Plunkett W. ATM and the Mre11-Rad50-Nbs1 complex respond to nucleoside analogue-induced stalled replication forks and contribute to drug resistance. Cancer Res. 2008;68:7947-7955. 223.Shanmugam M, McBrayer SK, Qian J, Raikoff K, Avram MJ, Singhal S, et al. Targeting glucose consumption and autophagy in myeloma with the novel nucleoside analogue 8-aminoadenosine. J Biol Chem. 2009;284:26816-26830. 224.Bonate P, Arthaud L, Cantrell WR Jr, Stephenson K, Secrist JA 3rd, Weitman S. Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov. 2006;5:855-863. 225.Wang D, Liu B, Ma Y, Wu C, Mou Q, Deng H, et al. A molecular recognition approach to synthesize nucleoside analogue based multifunctional nanoparticles for targeted cancer therapy. J Am Chem Soc. 2017;139:14021-14024. 226.Diab R, Degobert G, Hamoudeh M, Dumontet C, Fessi H. Nucleoside analogue delivery systems in cancer therapy. Expert Opin Drug Deliv. 2007;4:513-531.
|