跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇迺文
研究生(外文):Nai-Wen Su
論文名稱:蟲草素做為對抗口腔癌的節拍式治療藥物和放射線增敏劑之抗癌效果及機轉
論文名稱(外文):Anti-Cancer Effects and Mechanisms of Cordycepin as Metronomic Therapeutic Agent and Radiosensitizer against Oral Cancer
指導教授:蔡東湖蔡東湖引用關係陳裕仁陳裕仁引用關係
指導教授(外文):Tung-Hu TsaiYu-Jen Chen
學位類別:博士
校院名稱:國立陽明大學
系所名稱:傳統醫藥研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:93
中文關鍵詞:蟲草素口腔癌節拍式治療放射線增敏劑上皮間質轉化DNA損害反應路徑
外文關鍵詞:cordycepinoral cancermetronomic therapyradiosensitizerEMTDNA damage respone
相關次數:
  • 被引用被引用:1
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
研究背景與目標:
以全球癌症流行病學而言,頭頸部鱗狀上皮細胞癌的盛行率占所有癌症的第六位,且許多患者會因這個疾病而死亡。在台灣,60-70% 的頭頸部鱗狀上皮細胞癌其原發部位來自口腔,又稱口腔癌。即使接受了合併手術、放射線治療以及化學治療,約只有一半的病患能達到長期存活。當口腔癌處於復發或轉移階段,存活時間中位數約只有7-10個月。因此,在口腔癌治療上仍有很大的進步空間。
蟲草素 (Cordycepin)是一種可以由中草藥”冬蟲夏草”提取出來的純化合物。在已知的研究結果中,蟲草素表現出包含了抗腫瘤在內的作用。本研究的目標分兩點:(一) 蟲草素能對口腔癌細胞有細胞毒殺及抑制生長的效果,並抑制癌症的上皮間質轉化(epithelial mesenchymal transition, EMT)特性。(二) 蟲草素能做為放射線增敏劑,加強放射線治療對口腔癌細胞毒殺作用。

研究材料與方法:
實驗中所使用口腔癌細胞株為SAS、OEC-M1、OC-3,正常組織對照細胞為人類纖維母細胞(HFW cell)及角質形成細胞(HaCaT cell)。
MTT 試驗用於測定蟲草素對細胞活性的影響,而colony formation試驗則是檢測加強放射線毒殺作用的效果。流式細胞儀用於確認細胞週期分布的比例。傷口癒合試驗(wound healing assay)用於評估細胞移動侵犯的能力。細胞凋亡則是由caspase-3 活性來測定。我們同時使用免疫螢光染色以及流式細胞儀來偵測γ-H2AX的存在,是一個DNA 雙股斷裂的指標。上皮間質轉化以及放射線治療後的DNA修補反應在分子層面的變化與探究則是藉由西方墨點法。蟲草素單獨使用或合併放射線對口腔癌細胞的治療效果,都再經由動物實驗驗證。

結果:
MTT試驗顯示,蟲草素可以抑制口腔癌細胞活性,並有隨劑量與時間增加而遞增的效應。形態學的評估以及caspase-3 活性增加,支持了蟲草素使口腔癌細胞進入細胞凋亡。單獨蟲草素的治療使得癌細胞細胞週期增加停留在 G2/M phase的比例,這個現象在合併放射線治療時更為顯著。蟲草素也減緩口腔癌細胞移動與侵犯的能力,而這個現象可由上皮指標E-cadherin表現量增加,間質指標N-cadherin表現量減少,所代表上皮間質轉化被抑制來解釋。上述現象也在動物實驗中腫瘤的免疫染色被驗證。而當蟲草素合併放射線治療時,可更抑制口腔癌細胞形成聚落能力。蟲草素也使得放射線治療所造成癌細胞DNA 雙股斷裂的時間延長,意即癌細胞修補DNA缺陷的能力下降。上述現象,與西方墨點法顯示共濟失調毛細血管擴張症突變激酶(ataxia-telangiectasia mutated, ATM)和檢查點激酶2 (checkpoint kinase 2, Chk2)的表現量下降相關。同時,蟲草素也增加了檢查點激酶1 (checkpoint kinase 1, Chk1)的表現,此現象可能會弱化蟲草素促進放射線毒性的能力。當以siRNA方法將癌細胞Chk1蛋白表現阻斷後,可再加強放射線毒殺細胞的效果而間接驗證上述推論。蟲草素無論是單獨給予或合併放射線治療,都能有效抑制口腔癌腫瘤在小鼠模式下的生長。同時在實驗中低劑量長時間給予的投藥方式,並無顯著的毒性產生。

結論:
由研究結果,蟲草素確實能藉由抑制上皮間質轉化現象,而破壞口腔癌細胞的活性及生長能力。蟲草素同時也經由對DNA損害反應路徑(DNA damage response pathway)的調控,來加強放射線治療對癌細胞的毒殺效果。以上蟲草素對於口腔癌抗癌效果,都在細胞及動物實驗中獲得驗證。
ABSTRACT
Study background and aim
Squamous cell carcinoma of the head and neck (SCCHN) is the 6th most common cancer and causes a major cancer-related mortality. In Taiwan, sixty-to-seventy percent of SCCHN arises from oral cavity, namely oral squamous cell carcinoma (OSCC). Despite combination treatments with surgery, radiotherapy (RT) and chemotherapy, the long term survival remains approximately 50%. Patients with recurrent or refractory diseases have even dismal prognosis with a median overall survival 7 to 10 months. There are great unmet medical needs in the OSCC treatment.
Cordycepin, one of the important pure compounds purified from the fungal medicinal herb Cordyceps sinensis, possesses anticancer activity through a variety of mechanisms. The aim of our study was to investigate if cordycepin exerts anti-cancer effect against oral cancer through inhibiting the epithelial mesenchymal transition (EMT) and enhancing the radiation response of OSCC cells.

Materials and Methods:
OSCC cell lines, include SAS, OEC-M1 and OC-3 were used in the study. We performed MTT and colony formation assay to test the cytotoxicity and radiosensitizing effects of cordycepin. The cell cycle analysis was performed by flow cytometry. The apoptotic effect was measured by caspase 3 activity assay. The migration inhibition was demonstrated by wound healing assay. Hallmark of RT induced DNA double strand break (DSB), γ-H2AX, was testified by immunofluorescence and flow cytometry. The molecular modulation of EMT process and DNA damage response were evaluated by Western blotting. Lastly, the anticancer effect was examined in the OSCC-bearing mice model.

Results:
Cordycepin inhibited the OSCC cell viability in a dose and time dependent manner. Morphological characteristics of apoptosis and increased caspase 3 activity were observed. Cell cycle arrested on G2/M phase by treating with cordycepin alone. Combination of cordycepin and RT further prolonged G2/M arrest. Delayed tumor cell migration and inhibited EMT process were demonstrated by decreased E-cadherin and increased N-cadherin expression. This EMT inhibition was further examined by the immunohistochemical stain of the xenograft tumors. Colony formation assay revealed that cordycepin potentiated the RT cytotoxic effects. The combination treatment also prolonged the DNA DSB repair. We found that cordycepin decreased expression of ataxia telangiectasia-mutated kinase and checkpoint kinase 2 protein to prevent appropriate DNA repair and cell cycle arrest. Reciprocal upregulation in the expression of checkpoint kinase 1(Chk1) might suggest a compensatory cell protection mechanism. Furthermore, we demonstrated the enhanced radiosensitizing effect through siRNA knockdown of the Chk1 protein. Metronomic administration of cordycepin inhibited the OSCC-bearing mice tumor growth. Cordycepin combination treatment further augmented the growth inhibitory activity of RT. No major toxicities of the metronomic dosing were observed.

Conclusion:
In our study, we concluded that cordycepin possesses anticancer effects against OSCC cells through EMT inhibition and DNA damage response modulation. Development of cordycepin into a novel metronomic therapeutic agent as well as a radiosensitizer against OSCC needs further investigation.
Contents
致謝------------------------------------------------i
Contents ------------------------------------------iii
List of Figures -----------------------------------vi
Abstract ------------------------------------------viii
中文摘要 -------------------------------------------xi
1. Introduction ----------------------------------1
1.1 Head and neck cancer: epidemiology ------------1
1.2 Head and neck cancer: treatments and unmet
medical needs ---------------------------------1
1.3 Hallmarks of cancer ---------------------------2
1.3.1 Programmed cell death (PCD) and apoptosis
-------------------------------------------3
1.3.2 Sustained proliferation and cell cycle
regulation --------------------------------5
1.3.3 Epithelial-mesenchymal transition and
metastasis --------------------------------7
1.4 Radiotherapy ----------------------------------9
1.4.1 Radiation biology and radioresistance -----9
1.4.2 DNA damage response -----------------------10
1.5 Concept of metronomic therapy -----------------12
1.6 Traditional Chinese medicine (TCM) with
anticancer effects ----------------------------13
1.6.1 Cordyceps Sinensis and cordycepin ---------13
1.7 Hypothesis and aim of the study ---------------14

2.Materials and methods ---------------------------15
2.1. Chemicals and reagents -----------------------15
2.2. Cell lines and cell culture ------------------16
2.3. Cell viability measurement: MTT assay --------17
2.4. Cell morphology: Liu`s stain -----------------17
2.5. Apoptosis cell death : Caspase 3 activity assay
----------------------------------------------17
2.6. Cell Cycle Analysis --------------------------18
2.7. Cell migration: wound healing assay ----------19
2.8. Colony formation assay -----------------------19
2.9. Immunofluorescence analysis of γH2AX ---------20
2.10. Flow cytometric analysis of γH2AX -----------20
2.11. Western blot analysis -----------------------21
2.12. Chk1 siRNA knockdown and colony formation
assay ---------------------------------------22
2.13. Animals and in vivo experiments -------------22
2.14. Immunohistochemistry staining of xenograft
tumor ---------------------------------------24
2.15. Statistical analysis ------------------------25

3.Results -----------------------------------------25
3.1. Cordycepin exerted growth inhibition on OSCC -25
3.2. Cordycepin induced OSCC apoptosis ------------26
3.3. Cordycepin resulted in G2/M arrest -----------26
3.4. Combined cordycepin and radiotherapy treatment
further prolonged the G2/M phase arrest ------27
3.5. Cordycepin delayed wound closure by inhibiting
EMT process ----------------------------------27
3.6. Cordycepin inhibited xenograft tumor growth and
prolonged survival ---------------------------28
3.7. Validation of EMT inhibition by Cordycepin in
xenograft tumor ------------------------------28
3.8. Cordycepin enhanced radiosensitivity of OSCC
cells ----------------------------------------29
3.9. Cordycepin protracted radiotherapy-induced DNA
double stand break ---------------------------29
3.10.Cordycepin enhanced radiotherapy effects
through the DNA damage repair machinery ------30
3.11.Knockdown of Chk1 sensitized the OSCC cells to
combined radiation and cordycepin treatment---30
3.12.Combined radiotherapy and cordycepin treatment
improved OSCC xenograft tumor control --------31
3.13.Cordycepin plus irradiation promoted apoptosis
of the OSCC tumor cells ----------------------32

4.Discussion --------------------------------------32
4.1. Pro-apoptotic effects of cordycepin ----------32
4.2. Anti-EMT effects of cordycepin ---------------33
4.3. Cell cycle and DNA damage response modulation
by cordycepin --------------------------------35
4.4. Metronomic schedule of cordycepin in xenograft
model ----------------------------------------38
4.5. Anti-cancer development of cordycepin and its
derivatives ----------------------------------39

5. Conclusion -------------------------------------40
Reference -----------------------------------------41

List of Figures
Figure 1 Cordycepin inhibited oral cancer cell
proliferation ---------------------------71
Figure 2 Cordycepin triggered apoptosis in two
OSCC cell lines, but not human fibroblasts
-----------------------------------------72
Figure 3 Cordycepin resulted in OSCC cell cycle
arrest at G2/M phase --------------------74
Figure 4 Combined cordycepin and RT treatment
prolonged G2/M phase arrest of OSCC cells
-----------------------------------------76
Figure 5 Cordycepin inhibited the migration ability
of OSCC cells through EMT prohibition ---77
Figure 6 Cordycepin treatment inhibited tumor
growth, prolonged survival time and
maintained organ functions --------------80
Figure 7 Cordycepin prohibited EMT in xenograft
tumors ----------------------------------82
Figure 8 Cordycepin enhanced the radiosensitivity
of the OSCC cells -----------------------83
Figure 9 Combined cordycepin and RT treatment
prolonged the presence of γ-H2AX, a
biomarker of double strand breaks -------84
Figure 10 Cordycepin enhanced radiation toxicity
through the regulation of DNA damage
response proteins -----------------------86
Figure 11 Chk1 protein knockdown sensitized the OSCC
cells to cordycepin and RT treatment ----87
Figure 12 Cordycepin in combination with RT delayed
the OSCC tumor growth in the xenograft
model -----------------------------------89
Figure 13 Cordycepin plus radiotherapy increased
apoptosis in OSCC tumor cells -----------91
Figure 14 Anticancer mechanisms of cordycepin
against oral cancer ---------------------93

Appendix
1. Metronomic cordycepin therapy prolongs survival of
oral cancer-bearing mice and inhibits epithelial-
mesenchymal transition. Molecules. 2017 Apr. 13;
22(4). Pii: E629. doi: 10.3390/molecules22040629.

2. Cordycepin, isolated from medicinal fungus Cordyceps
sinensis, enhances radiosensitivity of oral cancer
associated with modulation of DNA damage repair. Food
Chem Toxicol. 2019 Feb; 124:400-410.
doi: 10.1016/j.fct.2018.12.025.
REFERENCE:
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman
D. Global cancer statistics. CA Cancer J Clin. 2011;
61(2):69-90.
2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers
C, Rebelo M, et al. Cancer incidence and mortality
worldwide: sources, methods and major patterns in
GLOBOCAN 2012. Int J Cancer. 2015; 36(5):E359-86.
3. Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and
neck cancer. Lancet. 2008; 371(9625):1695-709.
4. Kawakita D, Matsuo K. Alcohol and head and neck
cancer. Cancer Metastasis Rev. 2017; 36(3):425-34.
5. Jethwa AR, Khariwala SS. Tobacco-related
carcinogenesis in head and neck cancer. Cancer
Metastasis Rev. 2017; 36(3):411-23.
6. Mayne ST, Morse DE, Winn DM. Cancers of the oral
cavity and pharynx. In Cancer Epidemiology and
Prevention; Schottenfeld D, Fraumeni FJ.; Oxford
University Press: Oxford, UK, 2006.
7. Chuang SL, Su WW, Chen SL, Yen AM, Wang CP, Fann JC,
et a;. Population-based screening program for reducing
oral cancer mortality in 2,334,299 Taiwanese cigarette
smokers and/or betel quid chewers. Cancer. 2017;
123(9):1597-609.
8. Wu YH, Yen CJ, Hsiao JR, Ou CY, Huang JS, Wong Ty, et
al. A comprehensive analysis on the association
between tobacco-free betel quid and risk of head and
neck cancer in Taiwanese men. PLoS One. 2016;
11(10):e0164937.
9. Health promotion administration ministry of health and
welfare, Taiwan. Cancer Registry Annual Report, 2015,
Taiwan. https://www.hpa.gov.tw/Pages/Detail.aspx?
nodeid=269&pid=8084
10. Haddad RI, Shin DM. Recent advances in head and neck
cancer. N Engl J Med. 2008; 359(11):1143-54.
11. Cooper JS, Zhang Q, Pajak TF, Forastiere AA, Jacobs
J, Saxman SB, et al. Long-term follow-up of the RTOG
9501/intergroup phase III trial: postoperative
concurrent radiation therapy and chemotherapy in
high-risk squamous cell carcinoma of the head and
neck. Int J Radiat Oncol Biol Phys. 2012; 84(5):1198-
205.
12. D`cruz A, Lin T, Anand AK, Atmakusuma D, Calaguas MJ,
Chitapanarux I, et al. Consensus recommendations for
the management of head and neck cancer in Asia
countries: a review of international guidelines. Oral
Oncol. 2013; 49(9):872-7.
13. Bernier J, Domenge C, Ozsahin M, Matuszewska K,
Lefebvre JL, Greiner RH, et al. Postoperative
irradiation with or without concomitant chemotherapy
for locally advanced head and neck cancer. N Engl J.
Med 2004; 350(19):1945-52.
14. Gregoire V, Langendijk JA, Nuyts S. Advances in
radiotherapy for head and neck cancer. J Clin Oncol.
2015; 33(29):3277-84.
15. Forastiere AA, Zhang Q, Weber RS, Maor MH, Goepfert
H, Pajak TF, et al. Long-term results of RTOG 91-11:
a comparison of three nonsurgical treatment
strategies to preserve the larynx in patients with
locally advanced larynx cancer. J Clin Oncol. 2013;
31(7):845-52.
16. Chinn SB, Myers JN. Oral cavity carcinoma: current
management, controversies, and future directions. J
Clin Oncol. 2015; 33(29):3269-76.
17. Nguyen-Tan PS, Zhang Q, Ang KK, Weber RS, Rosenthal
DI, Randomized phase III trial to test accelerated
versus standard fractionation in combination with
concurrent cisplatin for head and neck carcinomas in
the Radiation Therapy Oncology Group 0129 trial:
long-term report of efficacy and toxicity. J Clin
Oncol. 2014; 32(34): 3858-66.
18. Szturz P, Wouters K, Kiyota N, Prabhash K, Noronha V,
Castro A, et al. Weekly low-dose versus three-weekly
high-dose cisplatin for concurrent chemoradiation in
locoregionally advanced non-nasopharyngeal head and
neck cancer: a systemic review and meta-analysis of
aggregate data. Oncologist. 2017; 22(9):1056-66.
19. Iyer NG, Tan DS, Tan VK, Wang W, Hwang J, Tan NC, et
al. Randomized trial comparing surgery and adjuvant
radiotherapy versus concurrent chemoradiotherapy in
patients with advanced, nonmetastatic squamous cell
carcinoma of the head and neck: 10-year update and
subset analysis. Cancer. 2015; 121(10):1599-607.
20. Xiang M, Holsinger FC, Colevas AD, Chen MM, Le QT,
Beadle BM. Survival of patients with head and neck
caner treated with definitive radiotherapy and concurrent cisplatin or concurrent cetuximab: a surveillance, epidemiology, and end results – medicare analysis. Cancer. 2018 oct 17. Doi:10.1002/cncr.31708.
21. Lala M, Chirovsky D, Cheng JD, Mayawala K. Clinical outcomes with therapies for previously treated recurrent/metastatic head-and-neck squamous cell carcinoma (R/M HNSCC): a systemic literature review. Oral Oncol. 2018; 84:108-20.
22. Sacco AG, Cohen EE. Current treatment options for recurrent or metastatic head and neck squamous cell carcinoma. J Clin Oncol. 2015; 33(29):3305-13.
23. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008; 359 (11):1116-27.
24. Trigos AS, Pearson RB, Papenfuss AT, Goode DL. How the evolution of multicellularity set the stage for cancer. Br J Cancer. 2018; 118(2):145-52.
25. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70.
26. Hanahan D, Weinberg RA. The hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-74.
27. Opydo-Chanek M, Gonzalo O, Marzo I. Multifaceted anticancer activity of BH3 mimetics: current evidence and future prospects. Biochem Pharmacol. 2017; 136:12-23.
28. Ma J, Waxman DJ. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther. 2008; 7(12):3670-84.
29. Brown JS, O`carrigan, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7(1):20-37.
30. Sasahira T, Kirita T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int J Mol Sci. 2018; 19:2413.
31. Horne SD, Pollick SA, Heng HHQ. Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer. 2015; 136(9):2012-21.
32. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017; 7(5):1016-36.
33. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018; 25(3):486-541.
34. Inthrani RI, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochimica et Biophysica Acta. 2011; 1807:735-45.
35. Baig S, Seevasant I, Mohammad J, Mukheem A, Huri HZ, Kamarul T. Potential of apoptotic pathway-targeted cancer therapeutic research: where do we stand? Cell Death Dis. 2016; 7:e2058.
36. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012; 45(6):487-98.
37. Cotter TG. Apoptosis and cancer: the genesis of a research filed. Nat Rev Cancer. 2009; 9(7):501-7.
38. Fulda S, DeBatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006; 25(34):4795-811.
39. Liu JJ, Lin M, Yu JY, Lu B, Bao JK. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett. 2011; 300(2):105-14.
40. Fox JL, MacFarlane M. Targeting cell death signaling in cancer: minimizing “collateral damage”. Br J Cancer. 2016;115(1):5-11.
41.Koff JL, Ramachandiran S, Bernal-,Mizrachi L. A time to kill: targeting apoptosis in cancer. Int J Mol Sci. 2015; 16(2):1942-55.
42.Ashkenazi A, Fairbrother WJ, Leversom JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017; 16(4):273-84.
43. Letai AG. Diagnosing and exploiting cancer`s addiction to blocks in apoptosis. Nat Rev Cancer. 2008; 8(2):121-32.
44. Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015; 35 suppl:S79-S103.
45. Fuchs Y, Steller H. Liver to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015; 16(6):329-44.
46. Fulda S. Caspase-8 in cancer biology and therapy. Cancer Lett. 2009; 281(2):128-33.
47. Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol. 2014; 90(3):200-19.
48. Derakhshan A, Chen Z, Van Waes C. Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin Cancer Res. 2016; 23(6):1379-87.
49. Gibson CJ, Davids MS. BCL-2 antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin Cancer Res. 2015; 21(22):5021-9.
50. Li-Weber M. Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett. 2013; 332(2):304-12.
51. Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis. 2015; 20(12):1531-62.
52. Tewary P. Gunatilaka AAL, Sayers TJ. Using natural products to promote caspase-8 dependent cancer cell death. Cancer Immunol Immunother. 2017; 66(2):223-31.
53. Wenzel ES, Singh ATK. Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo. 2018; 32(1):1-5.
54. Yasutis K, Kozminski K. Cell cycle checkpoint regulators reach a zillion. Cell Cycle. 2013; 12(10):1501-9.
55. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009; 9(3):153-66.
56. Lobrich M, Jeggo PA. The impact of negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer. 2007; 7(11):861-9.
57. Bertoli C, Skotheim JM, de Bruin RAM. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013; 14(8): 518-28.
58. Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009; 9(11):785-97.
59. El-Deiry WS. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 2016; 76(18):1169-74.
60. Foijer F, te Riele H. Check, double check: the G2 barrier to cancer. Cell Cycle. 2006; 5(8):831-6.
61. Bucher N, Britten CD. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br. J Cancer. 2008; 98(3):523-8.
62. Schmit TL, Ahmad N. Regulation of mitosis via mitotic kinases: new opportunities for cancer management. Mol Cancer Ther. 2007; 6(7):1920-31.
63. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017; 17(2):93-115.
64. Mishra R. Cell cycle-regulatory cyclins and their deregulation in oral cancer. Oral Oncol. 2013; 49 (6):475-81.
65. Lapenna S, Giodano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov. 2009; 8(7):547-66.
66. Mills CC, Kolb EA, Sampson VB. Developent of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy. Cancer Res. 2018; 78(2):320-5.
67. Geol S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol. 2018; 28(11):911-25.
68. Cisconti R, Monica RD, Grieco D. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J Exp Clin Cancer Res. 2016; 35(1): 153.
69. Newell M, Baker K, Postovit LM, Field CJ. A critical review on the effect of docosahexaenoic acid (DHA) on cancer cell cycle progression. Int J Mol Sci. 2017; 18(8).
70. Rengarajan T, Rajendran P, Nandakumar N, Balasubramanian MP, Nishigaki I. Cancer preventive efficacy of marine carotenoid fucoxanthin: cell cycle arrest and apoptosis. Nutrients. 2013; 5(12):4978-89.
71. Jahanafrooz Z, Motamed N, Rinner B, Mokhtarzade A, Baradaran B. Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNA regulator. Life Sci. 2018; 213:236-47.
72. Zhang R, Wang Y, Li J, Jin H, Song S, Huang C. The Chinese hern isolate yuanhuacine (YHL-14) induces G2/M arrest in human cancer cells by upregulateing p21 protein expression through a p53 protein-independent cascade. J Biol Chem 2014; 289(10):6394-403.
73. Jo EH, Kim SH, Ra JC, Kim SR, Cho SD, Jung JW, et al. Chemopreventive properties of the ethanol extract of Chinese licorice (Glycyrrhiza uralensis) root: induction of apoptosis and G1 cell cycle arrest in MCF-7 human breast cancer cells. Cancer Lett. 2005; 230(2):239-47.
74. Nieto AM, Huang RYJ, Jackson RA, Thiery JP. EMT:2016. Cell. 2016; 166(1):21-45.
75. Thiery JP, Acloque H, Huang RYJ, Nieto NA. Epithelial-mesenchymal transition in development and disease. Cell. 2009; 139(5):871-90.
76. Polyak K, Weinberg RA. Transition between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009; 9(4):265-73.
77. Ribatti D. Epithelial-mesenchymal transition in morphogenesis, cancer progression and angiogenesis. Exp Cell Res. 2017; 353(1):1-5.
78. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97-110.
79. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018; 18(2):128-34.
80. Pietila M, Ivaska J, Mani SA. Whom toblame for metastasis, the epithelial-mesenchymal transition or the microenvironment? Cancer lett. 2016; 380(1):359-68.
81. Gao D, Vahdat L, Wong S, Chang JC, Mittal V. Microenvironment regulation of epithelial-mesenchymal transitions in cancer. Cancer res. 2012; 72(19):4883-9.
82. Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res. 2014; 21(5):962-8.
83. Bedi U, Mishra VK, Wasilewski D, Scheel C, Johnsen SA. Epigenetic plasticity: a central regulator of epithelial-mesenchymal transition in cancer. Oncotarget. 2014; 5(8):2016-29.
84. Peinado H, Olmeda D, Cano A. Snail, ZEB and bHLH factors in tumor progression: an alliance against the epithelial phenotype? Nat Rev Cancer.2007; 7(6):415-28.
85. Ye X, Weinberg RA. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends cell biol. 2015; 25(11):675-86.
86. Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012; 22(5-6):396-403.
87. Chang JT, Mani SA. Sheep, wolf, or werewolf: cancer stem cells and the epithelial-mesenchymal transition. Cancer Lett. 2013; 341(1):16-23.
88. Ishikawa T. Cancer stem cells and epithelial-mesenchymal transition: novel therapeutic targets for cancer. Pathol Int. 2016; 66(11):601-8.
89. Chen C, Zimmermann M, Tinhofer I, Kaufmann AM, Albers AE. epithelial-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Lett. 2013; 338(1):47-56.
90. Mallini P, Lennard T, Kirby J, Meeson A. Epithelial-to-mesenchymal transition: what is the impact on breast cancer stem cells and drug resistance. Cancer Treat Rev. 2014; 40(3):341-8.
91. Marie-Egyptienne DT, Lohse I, Hill RP. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett. 2013; 341(1):63-72.
92. Deng J, Wang L, Chen H, Hao J, Ni J, Chang L, et al. Targeting epithelial-to-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer. Oncotarget. 2016; 7(34):55771-88.
93. Chung CH, Parker JS, Ely K, Carter J, Yi Y, et al. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-κB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 2006; 66(16):8210-8.
94. Kim CW, Hwang KA, Choi KC. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-to-mesenchymal transition, migration, and invasion of malignant cancer cells. Phytomedicine. 2016; 23(14):1787-96.
95. Way TD, Huang JT, Chou CH, Huang CH, Yang MH, Ho CT. Emodin represses TWIST1-induced epithelial-to-mesenchymal transition cells by inhibiting the β-catenin and Akt pathways. Eur J Cancer. 2014; 50(2):366-78.
96. Liu YM, Liu YK, Huang PI, Tsai TH, Chen YJ. Antrodia cinnamomea mycelial fermentation broth inhibits the epithelial-to-mesenchymal transition of human esophageal adenocarcinoma cancer cells. Food Chem Toxicol. 2018; 119:380-6.
97. Akhtar N, Syed DN, Lall RK, Mirza B, Mukhtar H. Targeting epithelial to mesenchymal transition in prostate cancer by a novel compound, plectranthoic acid, isolated from Ficus microcarpa. Mol Carcinog. 2018; 57(5):653-63.
98. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidenced-based clinical guidelines. Cancer. 2005; 104(6):1129-37.
99. Bolus NE. Basic review of radiation biology and terminology. J Nucl Med Technol. 2017; 45(4):259-64.
100. Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W, et al. Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br J Radiol. 2014; 87(1035):20130715.
101. Kerns SL, Chung KH, Hall W, Werner Z, Chen Y, Ostrer H, et al. Radiation biology and oncology in the genomic era. Br J Radiol. 2018; 91(1091):20170949.
102. Harrington K, Jankowska P, Hingoran M. Molecular biology for the radiation oncologist: the 5Rs of radiobiology meet the hallmarks of cancer. Clin Oncol (R Coll Radiol). 2007; 19(8):561-71.
103.Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 2008; 8(6):425-37.
104. Good JS, Harrington KJ. The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiobiology. Clin Oncol (R Coll Radiol). 2013; 25(10):569-77.
105. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011; 11(4):239-53.
106. Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4R`s of radibiology revisited. Stem Cell. 2010; 28(4):639-48.
107. Teid PA, Wilson P, Li Y, Marcu LG, Bezak E. Curret understanding of cancer stem cells: review of their radiobiology and role in head and neck cancers. Head Neck. 2017; 39(9):1920-32.
108. Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, et al. Cancer stem cells and signaling pathways in radioresistance. Oncotarget. 2016; 7(10):11002-17.
109. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008; 8(7):545-54.
110. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumor microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015; 15(7):409-25.
111. Yin Z, Li C, Wang J, Xue L. Myeloid-derived suppressor cells: roles in the tumor microenvironment and tumor radiotherapy. Int J Cancer. 2018; Jul 11. Dio:10.1002/ijc.31744.
112. Yamamoto VN, Thylur DS, Bauschard M, Schmale I, Sinha UK. Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol. 2016; 63:44-51.
113. Perri F, Pacelli R, Scarpati GDV, Cella L, Giuliano M, Caponigro F, et al. Radioresistance in head and neck squamous cell carcinoma: biologic bases and therapeutic implications. Head Neck. 2015; 37(5):763-70.
114. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009; 461(7267):1071-8.
115. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012; 481(7381):287-94.
116. Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 2016; 16(1):20-33.
117. Giglia-Mari G, Zotter A, Vermeulen W. DNA damage response. Cold Spring Harb Perspect Biol. 2011; 3(1):a000745.
118. Magnander K, Elmroth K. Biological consequences of formation and repair of complex DNA damage. Cancer Lett. 2012; 327(1-2):90-6.
119. Darzynkiewics Z, Traganos F, Wlodkowic D. Impaied DNA damage response – an Achilles` heel sensitizing cancer to chemotherapy and radiotherapy. Eur J Pharmacol. 2009; 625(1-3):143-50.
120. Carrassa L, Damia G. DNA damage response inhibitors: mechanisms and potential applications in cancer therapy. Cancer Treat Rev. 2017; 60:139-51.
121. Lin AB, McNeely SC, Beckmann RP. Achieving precision death with cell-cycle inhibitors that target DNA replication and repair. Clin Cancer Res. 2017; 23(13):3232-40.
122. Hurley PJ, Bunz F. ATM and ATR, components of an integrated circuit. Cell Cycle. 2007; 6(4):414-7.
123. Morgan MA, Lawrance TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res. 2015; 21(13):2898-904.
124. Dillon MT, Good JS, Harrington KJ. Selective targeting of the G2/M cell cycle checkpoint to improve the therapeutic index of radiotherapy. Clin Oncol (R Coll Radiol). 2014; 26(5):257-65.
125. O`connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015; 60(4):547-60.
126. Sakthivel KM, ariharan S. Regulatory players of DNA damage repair mechanisms: role in cancer chemoresistance. Biomed Pharmacother. 2017; 93:1238-45.
127. Kareva I, Waxman DJ, Klement GL. Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. Cancer Lett. 2015; 358(2):100-6.
128. Lambrescu I, FicaS, Martins D, Spada F, Cella C, Bertani E, et al. Metronomic and metronomic-like therapies in neuroendocrine tumors – rationale and clinical perspectives. Cancer Treat Rev. 2017; 55:46-56.
129. Gnoni A, Silvestris N, Licchetta A Santini D, Scartozzi M, Ria R, et al. Metronomic chemotherapy from rationale to clinical studies: a dream or reality ? Crit Rev Oncol Hematol. 2015; 95(1):46-61.
130. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004; 4(6):423-36.
131. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target angiogenesis in mice. J Clin Invest. 2000; 105(8):1045-7.
132. Panel N, Adenis A, Bocci G. Cyclophosphamide-based metronomic chemotherapy: after 10 years of experience, where do we stand and where are we going? Crit Rev Oncol Hematol. 2012; 82(1):40-50.
133. Vives M, Ginesta MM, Gracova K, Graupera M, Casanovas O, Capella G, et al. Metronomic chemotherapy following maximum tolerated dose is an effective anti-tumor therapy affecting angiogenesis, tumor dissemination and cancer stem cells. Int J Cancer. 213; 133(10):2464-72.
134. Bocci G, Fioravanti A, Orandi P, Di Desidero T, Natale G, Fanelli G, et al. Metronomic ceramide analogue inhibit antiangiogenesis in pancreatic cancer through up-regulation of caveolin-1 and thrombospondin-1 and down-regulation of cyclin D1. Neoplasia. 2012; 14(9):833-45.
135. Ma J, Waxman DJ. Modulation of the antitumor activity of metronomic cyclophosphamide by the angiogenesis inhibitor axitinib. Mol Cancer Ther. 2008; 7(1):79-89.
136. Banissi C, Ghiringhelli F, Chen L, Carpentier AF. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother. 2009; 58(10):1627-34.
137. Klement G, Huang P, Bayer B, Green SK, Man S, Bohlen P, et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGF-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res. 2002; 8(1):221-32.
138. Folkins C, Man S, Xu P, ShakedY, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007; 67(8):3560-4.
139. Lien K, Georgsdottir S, Sivanathan L, Chan K, Emmenegger U. Low-dose metronomic chemotherapy: a systematic literature analysis. Eur J Cancer. 2013; 49(16):3387-95.
140. Cazzaniga ME, Dionisio MR, Riva F. Metronomic chemotherapy for advanced breast cancer patients. Cancer Lett. 2017; 400:252-8.
141. Romiti A, Falcone R, Roberta M, Marchetti P. Tackling pancreatic cancer with metronomic chemotherapy. Cancer Lett. 2017; 394;88-95.
142. Woo IS, Jung YH. Metronomic chemotherapy in metastatic colorectal cancer. Cancer Lett. 2017; 400:319-24.
143. De Felice F, Benevento I, Musella A, Musio D, Tombolini V. Metronomic chemotherapy in head and neck cancer. Cancer Lett. 2017; 400:219-22.
144. Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 2018; 19(11). pii:E3533.
145. Kinghorn AD, DE Blanco EJ, Lucas DM, Radotondraibe HL, Orjala J, Soejarto DD, et al. Discover of anticancer agents of diverse natural origin. Anticancer res. 2016; 36(11):5623-37.
146. Liu J, Wang S, Zhang Y, Fan HT, Lin HS. Traditional Chinese medicine and cancer: history, present situation, and development. Thorac Cancer. 2015; 6(5):561-9.
147. Bladodatski A, Yatsunskaya M, Mikhailova V, Tiasto V, Kagansky A, Katanaev VL. Medicinal mushrooms as an attractive new source of naturalcompounds for future cancer therapy. Oncotarget. 2018; 9(49):29259-74.
148. Wang YH, Feng L, Piao B, Zhang P. Review on research about traditional Chinese medicine in cancer stem cell. Evid Based Complement Alternat Med. 2017; 2017: 4505194.
149. Lin WF, Lu JY. Cheng BB. Ling CQ. Progression in research on the effects of traditional Chinese medicine on the tumor microenvironment. J Integr Med. 2017; 15(4):282-7.
150. Zhu L, Li L, Li Y, Wang J, Wang Q. Chinese herbal medicine as an adjunctive therapy for breast cancer: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2016; 2016:9469276.
151. Liao YH, Lin CC, Lai HC, Chiang JH, Lin JG, Li TC. Adjunctive traditional Chinese medicine therapy improves survival for liver cancer patients. Liver Int. 2015; 35(12):2595-602.
152. Li SG, Chen HY, Ou-Yang CS, Wang XX, Yang ZJ, Tong Y, et al. The efficacy of Chinese herbalmedicine as an adjunctive therapy for advanced non-small cell lung cancer: a systematic review and meta-analysis. PLoS. 2016; 8(2):e57604.
153. Chen X, Deng L, Jiang X, WuT. Chinese herbal medicine for oesophageal cancer. Cochrane Database Syst Rev. 2016; 22(1):CD004520.
154. Ng TB, Wang HX. Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol. 2005;57(12):1509-19.
155. Russel R, Peterson M. Cordyceps – a traditional Chinese medicine and another fungal therapeutic biofactory ? Phytochemistry. 2008; 69(7): 1469-95.
156. Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complement Alternat Med. 2015; 2015:575063.
157. Zhou X, Gong Z, Su Y, in J, Tang K. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol. 2009; 61(3):279-91.
158. Yue K, Te M, Zhou Z, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2013; 65(4):474-93.
159. Nakamura K, Shinozuka K, Yoshikawa N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J Pharmacol Sci. 2015; 127(1):53-6.
160. Hong T, Zhang M, Fan J. Cordyceps sinensis (a traditional Chinese medicine) for kidney transplant recipients. Cochrane Database Syst Rev. 2015; 12(10):CD009698.
161. Li SP, Zhang GH, Zeng Q, Huang ZG, Wang YT, Dong TT, et al. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine. 2006; 13(6):428-33.
162. Qi W, Zhang Y, Yan YB, Lei W, Wu ZX, Liu N, et al. The protective effect of cordymin, a prptide purified from the medicinal mushroom cordyceps sinensis, on diabetic osteopenia in alloxan-induced diabetic rats. Evid Based Complement Alternat Med. 2013; 2013:985636.
163. Zhang K, Yu Y, Zhang Z, Ding Y, Dai X, Li Y. Effect of polysaccharide from cultured cordyceps sinensis on immune function and anti-oxidation activity of mice exposed to 60Co. Int Immunopharmacol. 2011; 11(12):2251-7.
164. Zhou X, Lou L, Dressel W, Shadier G, Krumbiegel D, Schimidtke P, et al. Cordycepin is an immunoregulatory active ingredient of Cordycepin sinensis. Am J Chin Med. 2008;36(5):967-80.
165. Tuli HS, Sharma AK, Sandhu SS, Kashyap D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 2013; 93(23):863-9.
166. Wang XA, Xiang SS, Li HF, Wu XS, Li ML, Shu YJ, et al. Cordycepin nduces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules. 2014; 19(8):11350-65.
167. Hoo JC, Hwang JH, Jo E, Kim YR, Kim DJ, Lee KB, et al. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget. 2017; 8(7):12211-24.
168. Lee SY, Debnath T, Kim SK, Lim BO. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cell HT-29. Food Chem Toxicol. 2013; 60:439-47.
169. Chaicharoenaudomrung N, Jaroonwitchawan T, Noisa P. Cordycepin induces apoptotic cell deah of human brain cancer through the modulation of autophagy. Toxicol in Vitro. 2018; 46:113-21.
170. Yu X, Ling J, Liu X, Guo S, Lin Y, Liu X, et al. Cordycepin induces autophagy-mediated c-FLIPL degradation and leads to apoptosis in human non-small cell lung cancer cells. Oncotarget. 2017; 8(4):6691-9.
171. Lee SJ, Kim SK, Choi WS, Kim WJ, Moon SK. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch Biochem Biophy. 2009; 490(2):103-9.
172. Bi Y, Li H, Yi D, Bai Y, Zhong S, Liu Q, et al. β-catenin contributes to cordycepin-induced MGMT inhibition and reduction of temozolomide resistance in glioma cells by increasing intracellular reactive oxygen species. Cancer Lett. 2018; 435:66-79.
173. Lee SJ, Moon GS, Jung KH, Kim WJ, Moon SK. c-Jun N-terminal kinase 1 is required for cordycepin-mediaated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells. Food Chem Taxicol. 2010; 48(1):277-83.
174. Wang CW, Lee BH, Tai CJ. The inhibition of cordycepin on cancer stemness in TGF-beta induced chemo-resistant ovarian cancer cell. Oncotarget. 2017; 8(67):111912-21.
175. Zhang P, Huang C, Fu C, Tian Y, Hu Y, Wang B, et al. Cordycepin (3`-deoxyadenosine) suppressed HMGA2, Twist1 and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. Oncotarget. 2015; 6(12):9834-53.
176. Kubo E, Yoshikawa N, Kunitomo M, KagotaS, Shinozuka K, Nakamura K. Inhibitory effect of Cordycepin sinensis on experimental hepatic metastasis of melanoma by suppressing tumor cells invasion. Anticancer Res. 2010; 30(9):3429-34.
177. Wu WC, Hsiao JR, Lian YY, Lin CY, Huang BM. The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother Pharmacol. 2007; 60(1):103-11.
178. Hsu PY, Lin YH, Yeh EL, Lo HC, Hsu TH, Su CC. Cordcyepin and a preparation from Crodyceps militaris inhibit malignant transformation and proliferation by decreasing ECFR and IL-17RA signaling in murine oral cancer model. Oncotarget. 2017; 8(55):93712-28.
179. Chen YH, Wang JP, Pan BS, Mu YF, Lain MS, So EC, et al. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells. Onco Target Ther. 2013; 6:983-8.
180. Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016; 91(3):386-96.
181. Tian Y, Lin J, Tian Y, Zhang G, Zeng X, Zheng R, et al. Efficacy and safety of anti-EGFR agents administered concurrently with standard therapies for patients with head and neck squamous cell carcinoma: a systemic review and meta-analysis of randomized controlled trials. Int J Cancer. 2018; 142(11):2198-206.
182. Yoon SY, Park SJ, Park YJ. The anticancer properties of cordycepin and their underlying mechanisms. Int J Mol Sci. 2018;19(10). Pii:E3027.
183. Lee HH, Kim SO, Kim GY, Moon SK, Lim WJ, Jeong YK, et al. Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells. Environ Toxicol Pharmacol. 2014; 38(1):239-50.
184. Chen YH, Wang JY, Pan BS, Mu YF, Lai MS, So EC, et al. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells. Onco Targets Ther. 2013, 6, 983-998.
185. Liu KH, Tsai YT, Chin SY, Lee WR, Chen YC, Shen SC. Hypoxia stimulates the epithelial-to-mesenchymal transition in lung cancer cells through accumulation of nuclear β-catenin. Anticancer res. 2018; 38(11):6299-308.
186. Prislei S, Martinelli E, Zannoni GF, Petrillo M, Filppetti F, Mariani M, et al. Role and prognostic significance of the epithelial-mesenchymal transition factor ZEB2 in ovarian cancer. Oncotarget. 2015; 6(22):18966-79.
187. Maciaczyk D, Picard D, Zhao L, Koch K, Herrera-Rios D, Li G, et al. CBF1 is clinically prognostic and serves as a target to block cellular invasion and chemoresistance of EMT-like glioblastoma cells. Br J Cancer. 2017; 117(1):102-12.
188. Smith A, Teknos TN, Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 2013; 49(4) :287-92.
189. Bharti R, Dey G, Mandal M. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Lett. 2016; 375 (1):51-61.
190. Zhang P, Huang C, Fu C, Tian Y, Wang B, Strasner A, et al. Cordycepin (3’-deoxyadenosine) suppressed HMGA2, Twist1, and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. Oncotarget 2015; 6: 9834-9853.
191. Jeong JW, Jin CY, Park C, Han MH, Kim GY, Moon SK, et al. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int J Oncol. 2012; 40(5):1697-704.
192. Lee EJ, Kim WJ, Moon SK. Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother res. 2010; 24(12):1755-61.
193. Wang CW, Hsu WH, Tai CJ. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells. Oncotarget. 2017; 8(2):3049-58.
194. Wu WD, Hu ZM, Shang MJ, Zhao DJ, Zhang CW, Hong DF, et al. Cordycepin down-regulates multiple drug resistant (MDR)/HIF-1α through regulating AMPK/mTORC1 signaling in GBC-SD gallbladder cancer cells. Int J Mol Sci. 2014; 15(7):12778-90.
195. Kang FC, Chen PJ, Pan BS, Lai YC, Chen YC, Huang BM. Apoptotic effect of cordycepin combined with cisplatin and/or paclitaxel on MA-10 mouse leydig cells. Onco Targets Ther. 2015; 8:2345-60.
196. Wang CW, Lee BH, Tai CJ. The inhibition of cordycepin on cancer stemness in TGF-beta induced chemo-resistant ovarian cancer cell. Oncotarget. 2017; 8(67):111912-921.
197. Cho SH, Kang IC. The inhibitory effect of cordycepin on the proliferation of cisplatin-resistant A549 lung cancer cells. Biochem Biophys Res Commun. 2018; 498(3):431-6.
198. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004; 59(4):928-42.
199. Stadler J, Richly H. Regulation of DNA repair mechanisms: how the chromatin environment regulates the DA damage response. Int J Mol Sci. 2017; 18(8):1715.
200. Wang H, Wang H, Powell SN, Iliakis G, Wang Y. ATR affecting cell radiosensitivity is depend on homologous recombination repair but independent of nonhomologous end joining. Cancer Res. 2004; 64(19): 7139-43.
201. Sorensen CS, Hansan LT, Dziegielewski J, Syljuasen RG, Lundin C, Barker J, et al. The cell-cycle checkpoints kinase Chk1 is required for mammalian homologous recombination. Nat Cell Biol. 2005; 7(2):195-201.
202. Qiu Z, Leinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol. 2018; 126(3):450-64.
203. Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem. 2003;278(17):14806-11.
204. Hurley PJ, Bunz F. ATM and ATR, components of an integrated circuit. Cell Cycle. 2007;6(4):414-7.
205. Jazayeri A, Falck J, Lukas C, Bartek J, Smith GS, Lukas J, et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-stand break. Nat Cell Biol. 2006;8(21):37-45.
206. Gottifredi V, Prives C. The S phase checkpoint: when the crowd meets at the fork. Semin Cell Dev Biol. 2005;16(3):355-68.
207. Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene. 2008;27(28):3977-85.
208. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol. 2005;7(2):195-201.
209. Wang H, Wang H, Powell SN, Illiakis G, Wang Y. ATR affecting cell radiosensitivity is dependent on homologous recombination repair but independent of nonhomologous end joining. Cancer Res. 2004;64(19):7139-43.
210.Chan DA, Giaccia AJ. Harnessing synthetic lethal interaction in anticancer drug discovery. Nat Rev Drug Discov. 2011; 10(5):351-64.
211. Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C, Petermann E, et al. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood. 2016;127(5):582-95.
212. Palii SS, Cui Y, Innes CL, Paules RS. Dissecting cellular responses to irradiation via targeted disruptions of the ATM-CHK1-PP2A circuit. Cell Cycle. 2013;12(7):1105-18.
213. Seong da B, Hong S, Muthusami S, Kim WD, Yu JR, Park WY. Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur. J. Pharmacol. 2016; 771:77-83.
214. Wang XA, Xiang SS, Li HF, Wu XS, Li ML, Shu YJ, et al. Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules. 2014;19:11350-65.
215. Hwang IH, Oh SY, Jang HJ, Jo E, Joo JC, Lee KB, et al. Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression. PLoS One. 2017;12(10):e0186489.
216. Zhang Y, Zhang XX, Yuan RY, Ren T, Shao ZY, Wang HF, et al. Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth in vivo. Onco Targets Ther. 2018;11:4479-90.
217. Venugopal B, Awada A, Evans TR, Dueland S, Hendlisz A, Rasch W, et al. A first-in-human phase I and pharmacokinetic study of CP-4126 (CO-101), a nucleoside analogue, in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2015;76:785-792.
218.Magin S, Papaioannou M, Saha J, Staudt C, Iliakis G. Inhibition of homologous recombination and promotion of mutagenic repair of DNA double-strand breaks underpins arabinoside-nucleoside analogue radiosensitization. Mol Cancer Ther. 2015;16:1424-1433.
219.Wang Q, Liu X, Wang Q, Zhang Y, Jiang J, Guo X, et al. FNC, a novel nucleoside analogue inhibits cell proliferation and tumor growth in a variety of human cancer cells. Biochem Pharmacol. 2011;81:848-855.
220.Lech-Maranda E, Korycka A, Robak T. Clofarabine as a novel nucleoside analogue approved to treat patients with hematological malignancies:: mechanism of action and clinical activity. Mini Rev Med Chem. 2009;9:805-812.
221.Jordheim LP. Further evidences for pharmacogenetic assessment of nucleoside analogue-treated patients. Leuk Res. 2011;35:429-430.
222.Ewald B, Sampath D, Plunkett W. ATM and the Mre11-Rad50-Nbs1 complex respond to nucleoside analogue-induced stalled replication forks and contribute to drug resistance. Cancer Res. 2008;68:7947-7955.
223.Shanmugam M, McBrayer SK, Qian J, Raikoff K, Avram MJ, Singhal S, et al. Targeting glucose consumption and autophagy in myeloma with the novel nucleoside analogue 8-aminoadenosine. J Biol Chem. 2009;284:26816-26830.
224.Bonate P, Arthaud L, Cantrell WR Jr, Stephenson K, Secrist JA 3rd, Weitman S. Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov. 2006;5:855-863.
225.Wang D, Liu B, Ma Y, Wu C, Mou Q, Deng H, et al. A molecular recognition approach to synthesize nucleoside analogue based multifunctional nanoparticles for targeted cancer therapy. J Am Chem Soc. 2017;139:14021-14024.
226.Diab R, Degobert G, Hamoudeh M, Dumontet C, Fessi H. Nucleoside analogue delivery systems in cancer therapy. Expert Opin Drug Deliv. 2007;4:513-531.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 針灸與枸杞多糖對於大鼠性功能影響之研究
2. 微菌叢植入對於化療藥物引起大腸直腸癌小鼠胃腸道黏膜炎和腸道菌叢動態之影響及機轉
3. 茵陳蒿湯藥物動力學及中西藥交互作用
4. 牛樟芝發酵產物之抗癌作用 - 經由多重路徑調控癌症幹細胞特性
5. 五味子藥物動力學與藥效學及中西藥交互作用
6. 天然植物化合物Pterostilbene與Garcinol對抑制肺癌幹細胞特性及腫瘤相關巨噬細胞極化之研究
7. 探討人參鬚根萃取物與泰摩西芬及其代謝物在大鼠體內之藥物動力學交互作用
8. 開發高效液相層析串聯質譜方法分析香砂六君子湯之藥物動力學及改善化療後腸黏膜損傷之功效
9. 肝癌病人使用中藥的頻率與模式的健保資料庫分析與大鼠併用龍膽瀉肝湯與sorafenib的中西藥交互作用研究
10. 使用中醫藥來延緩椎間盤退化:退化及藥物動力學動物模式建立
11. 臨床前黃連製劑三黃瀉心湯與洛伐他汀的藥物動力學和抗血脂藥效交互作用及酸棗仁萃取物與阿普唑侖在大鼠的動物行為研究
12. 建立中草藥胎盤轉移之動物模式──以芬普尼為例
13. 菊花萃取物及菊莖葉萃取物中木犀草素和芹菜素於大鼠之生物轉換比較
14. 人參活性成分分析暨探討人參對司蘭吉林在藥物動力學之交互作用及其潛在神經性保護作用
15. 癌症病童父母治療共享決策過程之生活經驗