跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉蘋慧
研究生(外文):LIU, PING-HUI
論文名稱:通過ATRP聚合合成之雙親嵌段共聚物在改性回收PET之循環應用
論文名稱(外文):Amphiphilic block copolymers via ATRP polymerization utilized in the recycled PET resin
指導教授:郭霽慶
指導教授(外文):KUO, CHI-CHING
口試委員:賴偉仁陳錦文林俊豪
口試委員(外文):LAI, WEI-RENCHEN, JIN-WUNLIN, JYUN-HAO
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:RPETATRP雙親性複合材料HEMAGMA
外文關鍵詞:RPETATRPAmphiphilic block copolymerHEMAGMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
聚對苯二甲酸乙二酯(PET)是一種重要的熱塑性聚酯,由於近年對於環境問題的日益關注,廢棄物處理已成為一個重要的社會問題,PET的回收似乎是最理想的廢棄物處理方法,然而經過重複熱處理的PET材料可能發生熱裂解造成材料性能降低的問題,故本研究利用原子轉移自由基聚合(ATRP)合成雙親性嵌段共聚高分子進行處理,改善回收品性質,期望能使回收PET維持原本的物理性質,而黏度及機械性質則有明顯提升,材料選擇為單體2-Hydroxyethyl methacrylate (HEMA)及Glycidyl methacrylate (GMA)。首先,將HEMA單體利用ATRP法先備製出大分子引發劑Poly(HEMA)-Br作為雙鏈共聚物之第一鏈段,隨後第二鏈段GMA的團塊聚合以大分子引發劑Poly(HEMA)-Br作為基底,利用ATRP的方式將單體GMA做嵌段聚合並接合在Poly(HEMA)-Br上,合成出雙嵌段共聚物Poly(HEMA)-b-Poly(GMA),接著將合成後的聚合物進行1H-NMR基礎性質鑑定及凝膠滲透層析儀(GPC)分析分子量及其分佈。主要利用鏈延長的功能性化合物與PET端基反應,使得在加工和使用過程中破裂的聚合物鏈可以重新結合,從而使聚合物分子具有更高的分子量和改進的性質,達到改善回收PET性質的目的。再將其利用微型雙螺桿成功做出各種比例的共聚物,透過奧士華黏度計、拉伸機等測試可得到優良的機械性質。預計未來在環保回收PET之應用(如:環保紗、包裝材和照相膠片)上將大放異彩。
Polyethylene terephthalate (PET) is an important thermoplastic polyester. Due to the increasing attention to environmental issues in recent years, waste disposal has become an important social issue. PET recycling seems to be an ideal waste treatment. However, the repeated heat treatment of PET materials may cause reduced properties due to thermal degradation. In this study, amphiphilic block copolymer macromolecules were synthesized by atom transfer radical polymerization (ATRP) to improve the properties of the recycled products. It is expected that the recycled PET maintain its original physical properties, while the viscosity and mechanical properties are significantly improved. The materials selected were monomers 2-Hydroxyethyl methacrylate (HEMA) and Glycidyl methacrylate (GMA). The macroinitiator poly(HEMA)-Br was prepared as the first segment of the diblock copolymer by using ATRP as the HEMA monomer, followed by, the second segment that was based on the macroinitiator Poly(HEMA)-Br which was bonded with GMA monomer by ATRP. The synthesized diblock copolymer Poly(HEMA)-b-Poly(GMA) was then subjected to 1H-NMR characterization and gel permeation chromatography (GPC) for analysis of molecular weight and its distribution. The main goal is to use of chain extension functional compounds and PET end-group reaction, so that in the process of processing and use of broken polymer chain can be re-combined, in order that polymer molecules have higher molecular weight and improved properties, to improve the recycled PET properties. The use of twin screw extruder to successfully make a variety of copolymers, its through the Ostwald Viscometer, SS curves can obtain excellent mechanical properties. It is expected to make a splash in future applications for environmentally friendly recycling of PET, such as eco-friendly yarn, packaging materials and photographic film.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1前言 1
1.2研究動機 2
第二章 文獻回顧 4
2.1原子轉移自由基聚合原理 4
2.1.1可控/活性自由基聚合概述 4
2.1.2原子轉移自由基聚合反應機制 5
2.1.3反應條件控制 6
2.1.4高分子設計 8
2.2高分子混摻應用原理 10
2.2.1摻合物種類 10
2.2.2高分子聚摻合的方法 11
2.3聚對苯二甲酸乙二酯(Polyethylene terephthalate,PET)介紹及其應用 12
2.3.1 PET回收處理現況 13
2.3.2不同用途的PET特性比較 14
第三章 實驗步驟 15
3.1 實驗材料 15
3.2實驗設備 16
3.3 實驗流程 16
3.3.1通過ATRP以一鍋製程製備雙嵌段共聚物 16
3.3.2PHEMA-b-PGMA於高分子的混摻應用 17
3.3.3實驗流程圖 17
3.4測試與分析儀器 18
3.4.1核磁共振光譜分析儀(NMR) 18
3.4.2凝膠滲透層析儀(GPC) 18
3.4.3微型雙螺桿混摻機 18
3.4.4動態機械分析(DMA) 19
3.4.5示差掃描量熱儀(DSC) 19
3.4.6熱重量分析儀(TGA) 19
3.4.7奧士華黏度計 20
3.4.8萬能拉力試驗機 20
第四章 結果與討論 21
4.1合成雙親性嵌段共聚物之探討 21
4.1.1通過ATRP以一鍋法合成雙嵌段共聚物 21
4.1.2 NMR圖譜分析 22
4.2嵌段共聚物的熱性質探討 28
4.2.1 TGA 28
4.2.2 DSC 29
4.3嵌段共聚物應用於高分子回收PET混摻之熱性質探討 31
4.3.1 TGA 31
4.3.2 DSC 35
4.3.3 DMA 42
4.4嵌段共聚物應用於高分子回收PET混摻之黏度探討 50
4.5嵌段共聚物應用於高分子回收PET混摻之機械性質探討 52
4.5.1 萬能拉力試驗機 52
第五章 結論 57
參考文獻 58



1.Patni, N.; Shah, P.; Agarwal, S.; Singhal, P., Alternate strategies for conversion of waste plastic to fuels. ISRN Renewable Energy 2013, 2013, 1-7.
2.Wilcox, C.; Van Sebille, E.; Hardesty, B. D., Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc Natl Acad Sci U S A 2015, 112 (38), 11899-904.
3.Li, W. C.; Tse, H. F.; Fok, L., Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci Total Environ 2016, 566-567, 333-349.
4.R. Geyer.; J. R. Jambeck.; K. L. Law., Production, use, and fate of all plastics ever made. Science Advances 2017, 3: e1700782.
5.J.R. Jambeck.; R. Geyer.; C. Wilcox.; T.R. Siegler.; M. Perryman.; A. Andrady.; R. Narayan.; K. L. Law., Plastic wasteinputs from land into the ocean. Science 2015, 347 (6223), 768-771.
6.D. E. MOUZAKIS.; N. PAPKE.; J. S. WU.; J. KARGER-KOCSIS., Fracture toughness assessment of Poly(ethyleneterephthalate) blends with glycidyl methacrylate modified polyolefin elastomer using essential work of fracture method. Journal of Applied Polymer Science 2001, Vol. 79, 842–852.
7.G. P. KARAYANNIDIS.; E. PSALIDA., Chain extension of recycled poly(ethylene terephthalate) with 2,2'-(1,4-phenylene)bis(2-oxazoline). Journal of Applied Polymer Science 2000, Vol. 77, 2206–2211.
8.Benvenuta-Tapia, J. J.; González-Coronel, V. J.; Soriano-Moro, G.; Martínez-De la Luz, I.; Vivaldo-Lima, E., Recycling of poly(ethylene terephthalate) by chain extension during reactive extrusion using functionalized block copolymers synthesized by RAFT polymerization. Journal of Applied Polymer Science 2018, 135 (42), 46771.
9.Joshi, C.; Seay, J.; Banadda, N., A perspective on a locally managed decentralized circular economy for waste plastic in developing countries. Environmental Progress & Sustainable Energy 2019, 38 (1), 3-11.
10.George, N.; Kurian, T., Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Industrial & Engineering Chemistry Research 2014, 53 (37), 14185-14198.
11.D. Carta.; G. Cao.; C. D'Angeli., Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis. ESPR - Environ Sci & Pollut Res 2003, 10 (6).
12.A. S. Goje.; S. Mishra., Chemical kinetics, simulation, and thermodynamics
of glycolytic depolymerization of poly(ethyleneterephthalate) waste with catalyst optimization for recycling of value added monomeric products. Macromol. Mater. Eng 2003, 288, 326–336.
13.M. Yamaye.; T. Hashime.; K. Yamamoto.; Y. Kosugi.; N. Cho.; T. Ichiki.; T. Kito., Chemical recycling of poly(ethylene terephthalate). 2. preparation of terephthalohydroxamic acid and terephthalohydrazide. Ind. Eng. Chem. Res 2002, 41, 3993-3998.
14.Sinha, V.; Patel, M. R.; Patel, J. V., Pet waste management by chemical recycling: A review. Journal of Polymers and the Environment 2008, 18 (1), 8-25.
15.Assadi, R.; Colin, X.; Verdu, J., Irreversible structural changes during PET recycling by extrusion. Polymer 2004, 45 (13), 4403-4412.
16.Nait-Ali, L. K.; Colin, X.; Bergeret, A., Kinetic analysis and modelling of PET macromolecular changes during its mechanical recycling by extrusion. Polymer Degradation and Stability 2011, 96 (2), 236-246.
17.Makkam, S.; Harnnarongchai, W., Rheological and mechanical properties of recycled PET modified by reactive extrusion. Energy Procedia 2014, 56, 547-553.
18.Awaja, F.; Pavel, D., Recycling of PET. European Polymer Journal 2005, 41 (7), 1453-1477.
19.Raffa, P.; Coltelli, M.-B.; Savi, S.; Bianchi, S.; Castelvetro, V., Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: An experimental and modelling study. Reactive and Functional Polymers 2012, 72 (1), 50-60.
20.Villalobos, M.; Awojulu, A.; Greeley, T.; Turco, G.; Deeter, G., Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy 2006, 31 (15), 3227-3234.
21.Christine R. Nascimento.; Chiaki Azuma.; Rosa´rio Bretas.; Marcelo Farah.; Marcos L. Dias., Chain Extension reaction in solid-state polymerization of recycled PET: The influence of 2,20-Bis-2-oxazoline and pyromellitic anhydride. Journal ofAppliedPolymer Science 2010, Vol. 115, 3177–3188.
22.行政院環境保護署-資源回收管理基金管理會(https://recycle.epa.gov.tw/)
23.BY L. H. BUXBAUM., The degradation of poly(ethy1ene terephthalate). Angew Chem internat Edit 1968, VoI. 7, No. 3.
24.N. CARDI.; R. PO.; C. CIANNOTTA.; E. OCCHIELLO.; F. CARBASSI.; G. MESSINA., Chain extension of recycled poly ( ethylene terephthalate) with 2,2'-Bis( 2-oxazoline). Journal of Applied Polymer Science 1993, Vol. 50, 1501-1509.
25.P. Kiliaris.; C. D. Papaspyrides.; R. Pfaendner., Reactive-extrusion route for the closed-loop recycling. Journal of Applied Polymer Science 2007, Vol. 104, 1671–1678.
of Poly(ethylene terephthalate)
26.Kiliaris, P.; Papaspyrides, C. D.; Pfaendner, R., Reactive-extrusion route for the closed-loop recycling of poly(ethylene terephthalate). Journal of Applied Polymer Science 2007, 104 (3), 1671-1678.
27.Nascimento, C. R.; Azuma, C.; Bretas, R. r.; Farah, M.; Dias, M. L., Chain extension reaction in solid-state polymerization of recycled PET: The influence of 2,2'-bis-2-oxazoline and pyromellitic anhydride. Journal of Applied Polymer Science 2010, 115 (6), 3177-3188.
28.Cavalcanti, F. N.; Teófilo, E. T.; Rabello, M. S.; Silva, S. M. L., Chain extension and degradation during reactive processing of PET in the presence of triphenyl phosphite. Polymer Engineering & Science 2007, 47 (12), 2155-2163.
29.S. Japon.; L. Boogh.; Y. Leterrier.; J.-A.E. Manson., Reactive processing of poly(ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer 2000, 41, 5809–5818.
30.N. Torres a.; J.J. Robin a.; B. Boutevin., Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection
molding. European Polymer Journal 2000, 36, 2075-2080.
31. 王建國,高分子合成新技術,化學工業出版社。
32.Wang, J.-S.; Matyjaszewski, K., Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995, 117 (20), 5614-5615.
33.Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(II)/methylaluminum Bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 1995, 28 (5), 1721-1723.
34.Matyjaszewski, K., Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 2012, 45 (10), 4015-4039.
35.Matyjaszewski, K.; Xia, J., Atom transfer radical polymerization. Chemical Reviews 2001, 101 (9), 2921-2990.
36.Sybert, P. D.; Beever, W. H.; Stille, J. K., Synthesis and properties of rigid-rod polyquinolines. Macromolecules 1981, 14 (3), 493-502.
37.Tang, W.; Matyjaszewski, K., Effects of initiator structure on activation rate constants in ATRP. Macromolecules 2007, 40 (6), 1858-1863.
38.Tang, W.; Matyjaszewski, K., Effect of ligand structure on activation rate constants in ATRP. Macromolecules 2006, 39 (15), 4953-4959.
39.Matyjaszewski, K.; Spanswick, J., Controlled/living radical polymerization. Materials Today 2005, 8 (3), 26-33.
40.Weaver, J. V. M.; Bannister, I.; Robinson, K. L.; Bories-Azeau, X.; Armes, S. P.; Smallridge, M.; McKenna, P., Stimulus-responsive water-soluble polymers based on 2-Hydroxyethyl methacrylate. Macromolecules 2004, 37 (7), 2395-2403.
41.ELĐF VARGÜN, 2009, Living radical polymerization of hydroxyethyl methacrylate and its block copolymerization with poly(dimethyl siloxane) macroazoinitiator, natural and applied sciences of middle east technical university.
42.Pizarro, G. d. C.; Marambio, O. G.; Jeria-Orell, M.; Flores, M. E.; Rivas, B. L., Amphiphilic diblock copolymers poly(2-hydroxyethylmethacrylate)-b-(N-phenylmaleimide) and poly(2-hydroxyethylmethacrylate)-b-(styrene) using the macroinitiator poly(HEMA)-Cl by ATRP: Preparation, characterization, and thermal properties. Journal of Applied Polymer Science 2010, 118 (6), 3649-3657.
43.Edmondson, S.; Vo, C. D.; Armes, S. P.; Unali, G. F.; Weir, M. P., Layer-by-layer deposition of polyelectrolyte macroinitiators for enhanced initiator density in surface-initiated ATRP. Langmuir 2008, 24 (14), 7208-15.
44.Wang, X.; Yun, W.; Jiang, W.; Wang, D.; Zhang, L.; Tang, J., An amphiphilic non-viral gene vector prepared by a combination of enzymatic atom transfer radical polymerization and enzymatic ring-opening polymerization. RSC Advances 2017, 7 (16), 9926-9932.
45.Krishnan, R.; Srinivasan, K. S. V., Controlled/“living” radical polymerization of glycidyl methacrylate at ambient temperature. Macromolecules 2003, 36 (6), 1769-1771.
46. 辜佩儀,2006,合成雙親性團聯共聚合物並製備蜂窩狀多孔性薄膜 ,碩士論文,國立交通大學應用化學系所。
47.C. KONING.; M. V. DUIN.; C. PAGNOULLE.; R. JEROME., Strategies for compatibilization of polymer blends. Pmg. P&m. Sri 1998, Vol. 23, 707-757.
48.J.A.Manson and L.H.Sperling. (1976). “Polymer blends and composites”, Ch.2, Plenum Press, New York.
49.D.M.Bigg et al. . (1986). Methods for preparing polymer blends/alloys, Vol.2, p57, Battelle.
50. 張茂祥;楊英賢;陳國忠,2011,聚乳酸與傳統塑膠之生命週期評估比較.,2011永續性產品與產業管理研討會,1-10。
51. 陳世春;劉守一,2001,塑膠材料潤滑性質,復漢出版社。
52. 經濟部工業局財團法人台灣綠色生產力基金會,2007,減容技術與設備手冊及案例彙編(下),經濟部工業局。
53. 李元豪,2007,聚對苯二甲酸乙二酯在二氧化碳中之玻璃轉移,結晶與熔融之研究,碩士論文,雲林科技大學。
54. Vona, I., Costanza, J., Cantor, H., & Roberts, W. (1965). Manufacture of plastics.
55.Shah, A. A.; Hasan, F.; Hameed, A.; Ahmed, S., Biological degradation of plastics: a comprehensive review. Biotechnol Adv 2008, 26 (3), 246-65.
56.Welle, F., Twenty years of PET bottle to bottle recycling—An overview. Resources, Conservation and Recycling 2011, 55 (11), 865-875.
57. 廖國銘,1999,回收PET與ABS的聚摻合研究,碩士論文,國立台灣科技大學纖維及高分子工程研究所。
58. Turner, S. R., Development of amorphous copolyesters based on 1,4-cyclohexanedimethanol. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (23), 5847-5852.
59. 陳俊雄,1998,回收PET結晶性質研究及加工性探討 ,碩士論文,國立臺灣科技大學纖維及高分子研究所。
60. Benvenuta Tapia, J. J.; Hernández Valdez, M.; Cerna Cortez, J.; Díaz García, V. M.; Landeros Barrios, H., Improving the rheological and mechanical properties of recycled PET modified by macromolecular chain extenders synthesized by controlled radical polymerization. Journal of Polymers and the Environment 2018, 26 (11), 4221-4232.
61. 王永泰,2013,以熱裂解方法探討PLA與PET廢容器混合回收之可行性研究 ,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所。
62. do Nascimento, W. A.; Agrawal, P.; de Mélo, T. J. A., Effect of copolymers containing glycidyl methacrylate functional groups on the rheological, mechanical, and morphological properties of poly(ethylene terephthalate). Polymer Engineering & Science 2018, 59 (4), 683-693.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊