|
[1] D. H. Reneker et al., “Macromolecular smart materials and structures,” Smart Mater. Struct., vol. 1, no. 1, pp. 84–90, 1999. [2] M. E. Lines and A. M. Glass., Principles and applications of ferroelectrics and related materials. Oxford university press., 1977. [3] K. Otsuka and C. M. Wayman, Shape memory materials. Cambridge university press, 1999. [4] S. R. Anton and H. A. Sodano, “A review of power harvesting using piezoelectric materials (2003–2006),” Smart Mater. Struct., vol. 16, no. 3, pp. R1-R21, 2007. [5] P. Martins et al., “Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P (VDF-TrFE) nanocomposites,” J. Phys. D. Appl. Phys., vol. 44, no. 49, pp. 495303, 2011. [6] E. P. Wohlfarth and K. H. J. Buschow, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances, vol. 2. Elsevier, 1980. [7] R. C.O’Handley, “Model for strain and magnetization in magnetic shape-memory alloys,” J. Appl. Phys., vol. 83, no. 6, pp. 3263–3270, 1998. [8] Y. Sutou et al., “Magnetic and martensitic transformations of NiMnX(X=In, Sn, Sb) ferromagnetic shape memory alloys,” Appl. Phys. Lett., vol. 85, no. 19, pp. 4358–4360, 2004. [9] Y. M. Jin, “Domain microstructure evolution in magnetic shape memory alloys: Phase-field model and simulation,” Acta Mater., vol. 57, no. 8, pp. 2488–2495, 2009. [10] M. Avellaneda and G. Harshé, “Magnetoelectric Effect in Piezoelectric/Magnetostrictive Multilayer (2-2) Composites,” J. Intell. Mater. Syst. Struct., vol. 5, no. 4, pp. 501–513, Jul.1994.
[11] X. Lu, H. Li, and B.Wang, “Theoretical analysis of electric, magnetic and magnetoelectric properties of nano-structured multiferroic composites,” J. Mech. Phys. Solids, vol. 59, no. 10, pp. 1966–1977, 2011. [12] N. T. Tsou et al., “Classification and analysis of trigonal martensite laminate twins in shape memory alloys,” Acta Mater., vol. 89, pp. 193–204, 2015. [13] J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys., vol. 28, no. 2, pp. 258–267, 1958. [14] A. Renuka Balakrishna et al., “Nanoscale periodic domain patterns in tetragonal ferroelectrics: A phase-field study,” Phys. Rev. B, vol. 93, no. 17, 2016. [15] A. Y. Woldman and C. M. Landis, “Phase-field modeling of ferroelectric to paraelectric phase boundary structures in single-crystal barium titanate,” Smart Mater. Struct., vol. 25, no. 3, 2016. [16] J. Britson et al., “Phase field simulation of charged interface formation during ferroelectric switching,” Acta Mater., vol. 112, pp. 285–294, 2016. [17] J. J. Wang et al., “Tunable thermal conductivity via domain structure engineering in ferroelectric thin films: A phase-field simulation,” Acta Mater., vol. 111, pp. 220–231, 2016. [18] L. Q. Chen, “Phase-Field Models for Microstructure Evolution,” Annu. Rev. Mater. Res., vol. 32, no. 1, pp. 113–140, 2002. [19] A. J. Bell, “Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes,” J. Appl. Phys., vol. 89, no.7, pp. 3907–3914, 2001. [20] Y. C. Shu et al., “Constrained modeling of domain patterns in rhombohedral ferroelectrics,” Appl. Phys. Lett., vol. 92, no. 5, pp. 5–7, 2008. [21] L. J. Li et al., “Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys,” Acta Mater., vol. 59, no. 7, pp. 2648–2655, 2011. [22] C. H. Lei et al., “Austenite-martensite interface in shape memory alloys,” Appl. Phys. Lett., vol. 96, no. 14, pp. 2008–2011, 2010. [23] L. J. Li et al., “Continuum theory and phase-field simulation of magnetoelectric effects in multiferroic bismuth ferrite,” J. Mech. Phys. Solids, vol. 58, no. 10, pp. 1613–1627, 2010. [24] Y. G. Zhou et al., “An unconventional phase field modeling of domains formation and evolution in tetragonal ferroelectrics,” Sci. China Technol. Sci., vol. 59, no. 7, pp. 1059–1064, 2016. [25] N. T. Tsou et al., “Evolution of compatible laminate domain structures in ferroelectric single crystals,” Acta Mater., vol. 61, no. 2, pp. 670–682, 2013.
[26] R. E. Loge and Z. Suo, “Nonequilibrium thermodynamics of ferroelectric domain evolution,” Acta Mater., vol. 44, no. 8, pp. 3429–3438, 1996. [27] H. Knupfer and M. Kruzik, “A sharp interface evolutionary model for shape memory alloys,” vol. 1355, no. 11, pp. 1347–1355, 2016. [28] M. P. Li and Q. P. Sun, “Nanoscale phase transition behavior of shape memory alloys — closed form solution of 1D effective modelling,” J. Mech. Phys. Solids, vol. 110, pp. 21–37, 2018. [29] L. Dong et al., “On interfacial energy of macroscopic domains in polycrystalline NiTi shape memory alloys,” Int. J. Solids Struct., vol. 80, pp. 445–455, 2016. [30] K. Tůma et al., “Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach,” J. Mech. Phys. Solids, vol. 95, pp. 284–307, 2016. [31] L. Blank et al., “Sharp Interface Limit for a Phase Field Model in Structural Optimization,” SIAM J. Comput., vol. 54, no.3, pp. 1558–1584, 2016. [32] J. M. Ball and R. D. James, “Fine phase mixtures as minimizers of energy,” Arch. Ration. Mech. Anal., vol. 100, no.1, pp. 13–52, 1987. [33] K. Bhattacharya, Microstructure of martensite. Oxford University Press, 2003. [34] Y. C. Shu and K.Bhattacharya, “Domain patterns and macroscopic behavior of ferroelectric materials,” Phil. Mag. B, vol. 81, no. 12, pp. 2021–2054, 2001. [35] J. Y. Li and D. Liu, “On ferroelectric crystals with engineered domain configurations,” J. Mech. Phys. Solids, vol. 52, no. 8, pp. 1719–1742, 2004. [36] Y. C. Shu and J. H. Yen, “Pattern formation in martensitic thin films,” Appl. Phys. Lett., vol. 91, no. 2, 2007. [37] J. H. Yen et al., “A study of electromechanical switching in ferroelectric single crystals,” J. Mech. Phys. Solids, vol. 56, no.6, pp. 2117–2135, 2008. [38] G. Arlt and P. Sasko, “Domain configuration and equilibrium size of domains in BaTiO3ceramics,” J. Appl. Phys., vol. 51, no.9, pp. 4956–4960, 1980. [39] N. T. Tsou, “Compatible domain structures in ferroelectric single crystals,” University of Oxford, 2011. [40] J. F. Nye, Physical properties of crystals: their representation by tensors and matrices. Oxford university press, 1985. [41] K. Y. Wang, “Phase-Field simulation of ferroelectric domains with material inhomogeneity – A finite element approach,” National Taiwan University, 2013. [42] M.Zgonik et al., “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B, vol. 50, no.9, pp. 5941–5949, 1994. [43] E. Burcsu et al., “Large electrostrictive actuation of barium titanate single crystals,” J. Mech. Phys. Solids, vol. 52, no. 4, pp. 823–846, 2004.
|