跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宜蒨
研究生(外文):Lee, Yi-Chien
論文名稱:以相場法及陡變介面法分析鐵電材料層狀結構
論文名稱(外文):Microstructural Analysis for Ferroelectric Materials by Using Phase-Field Method and Sharp-Interface Method
指導教授:鄒年棣
指導教授(外文):Tsou, Nien-Ti
口試委員:鄒年棣羅友杰舒貽忠
口試委員(外文):Tsou, Nien-TiLo, Yu-ChiehShu, Yi-Chung
口試日期:2018-07-13
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:66
中文關鍵詞:相場法陡變介面法鐵電材料諧和條件介面能
外文關鍵詞:phase-field methodferroelectricinterfacial energycompatible pattern
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鐵電材料是一種智慧材料,近年來被廣泛用於感測器、致動器與記憶體中。因其特殊的電學、熱學、力學等特性,使其受外加應力或環境改變時,其內部微結構排序亦會隨之改變,因此材料微結構為決定材料性質之重要因素。然而現今之微結構模擬模型仍存在些許不足,例如相場法模型雖能精準計算微結構變化過程,但其需耗費龐大計算效能;而陡變介面法能省去大量計算時間,卻無法計算晶壁能量,影響模型準確度。
為了更了解材料內部微結構變化,且改善模型之準確度,本文將發展一套結合不同理論優點之模型,使用有限元素軟體COMSOL進行模擬,首先驗證以新式相場法所建立之鐵電材料模型之準確性,再將陡變介面法模型推得之平衡微結構作為初始值導入相場模型之中進行模擬,分析其微結構演化過程與數據,再與文獻進行對比,驗證此耦合演算模型之可行性。
A procedure is Ferroelectric materials have been widely used in many applications of sensors, actuators and memory devices in recent decades. These materials have strong electrical, thermal, or mechanical coupling, giving an opportunity for crystals to sense the change of external loading or boundary conditions. The microstructure is the most important factor to determining the crystal properties. However, there are some limitations of typical microstructural modeling. For example, certain patterns of microstructure are assumed for sharp interface models, and the small calculation regions for phase field methods. Thus, the aim of this study is to develop a multiscale analysis scheme combining the merits of sharp interface and phase field models.
Firstly, the microstructure pattern can be obtained by sharp interface model based on compatibility equations. Wherein the pattern is determined with the assumption of flat interfaces. Then, the pattern is set as the initial state of the phase field model, for further energy minimization to eliminate the flat interface assumption. The phase field algorithm is implemented by a commercial software COMSOL Multiphysics. Microstructures of the tetragonal and rhombohedral ferroelectrics crystal are both examined in order to demonstrate the validity of the current work. Interesting laminate structures, such as herringbone patterns and stripe patterns, are generated. Also the effect of depolarization energy, applied load and applied electric field will be examined. The current multiscale model eliminates the assumption of flat interfaces, and at the same time, has better efficiency for engineering purposes.
Keywords: phase-field method, ferroelectric, compatible pattern, interfacial energy
摘 要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論與文獻回顧 1
1.1 研究背景與目的 1
1.2 文獻回顧 3
1.2.1 相場法(phase-field method) 3
1.2.2 陡變界面法(sharp interface method) 7
第二章 理論架構 10
2.1 鐵電材料 10
2.1.1 鐵電材料性質及兄弟晶 10
2.1.2 諧和條件 12
2.1.3 場變數μ與平均諧和條件(COA) 13
2.2 相場法架構 16
2.2.1 鐵電材料內部能量 16
2.2.2 熱力學驅動力及演化方程式 19
2.2.3 演化方程式無因次化 20
2.3 陡變界面法(Sharp Interface) 21
2.3.1 層狀結構的諧和條件 21
2.3.2 鐵電材料之層狀結構分類 25

第三章 相場模型驗證 26
3.1 材料係數與環境設定 26
3.1.1 正方晶鐵電材料係數 26
3.1.2 正方晶之晶壁 28
3.1.3 模型環境設定 29
3.2 模擬結果 30
3.2.1 不考慮消極化張量 30
3.2.2 考慮消極化張量 33
第四章 結果與討論 36
4.1 二階層狀結構推算 36
4.2 二階層狀結構初始條件 39
4.2.1 結構(1234) 39
4.2.2 結構(1324) 40
4.2.3 結構(1213) 41
4.2.4 結構(1323) 42
4.3 不考慮消極化張量之平衡結果 43
4.4 考慮消極化張量之平衡結果 49
4.5 結果討論 55
第五章 結論與未來展望 59
參考文獻 61
附錄一 COMSOL參數對照表 64
附錄二 材料係數 66
[1] D. H. Reneker et al., “Macromolecular smart materials and structures,” Smart Mater. Struct., vol. 1, no. 1, pp. 84–90, 1999.
[2] M. E. Lines and A. M. Glass., Principles and applications of ferroelectrics and related materials. Oxford university press., 1977.
[3] K. Otsuka and C. M. Wayman, Shape memory materials. Cambridge university press, 1999.
[4] S. R. Anton and H. A. Sodano, “A review of power harvesting using piezoelectric materials (2003–2006),” Smart Mater. Struct., vol. 16, no. 3, pp. R1-R21, 2007.
[5] P. Martins et al., “Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P (VDF-TrFE) nanocomposites,” J. Phys. D. Appl. Phys., vol. 44, no. 49, pp. 495303, 2011.
[6] E. P. Wohlfarth and K. H. J. Buschow, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances, vol. 2. Elsevier, 1980.
[7] R. C.O’Handley, “Model for strain and magnetization in magnetic shape-memory alloys,” J. Appl. Phys., vol. 83, no. 6, pp. 3263–3270, 1998.
[8] Y. Sutou et al., “Magnetic and martensitic transformations of NiMnX(X=In, Sn, Sb) ferromagnetic shape memory alloys,” Appl. Phys. Lett., vol. 85, no. 19, pp. 4358–4360, 2004.
[9] Y. M. Jin, “Domain microstructure evolution in magnetic shape memory alloys: Phase-field model and simulation,” Acta Mater., vol. 57, no. 8, pp. 2488–2495, 2009.
[10] M. Avellaneda and G. Harshé, “Magnetoelectric Effect in Piezoelectric/Magnetostrictive Multilayer (2-2) Composites,” J. Intell. Mater. Syst. Struct., vol. 5, no. 4, pp. 501–513, Jul.1994.

[11] X. Lu, H. Li, and B.Wang, “Theoretical analysis of electric, magnetic and magnetoelectric properties of nano-structured multiferroic composites,” J. Mech. Phys. Solids, vol. 59, no. 10, pp. 1966–1977, 2011.
[12] N. T. Tsou et al., “Classification and analysis of trigonal martensite laminate twins in shape memory alloys,” Acta Mater., vol. 89, pp. 193–204, 2015.
[13] J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys., vol. 28, no. 2, pp. 258–267, 1958.
[14] A. Renuka Balakrishna et al., “Nanoscale periodic domain patterns in tetragonal ferroelectrics: A phase-field study,” Phys. Rev. B, vol. 93, no. 17, 2016.
[15] A. Y. Woldman and C. M. Landis, “Phase-field modeling of ferroelectric to paraelectric phase boundary structures in single-crystal barium titanate,” Smart Mater. Struct., vol. 25, no. 3, 2016.
[16] J. Britson et al., “Phase field simulation of charged interface formation during ferroelectric switching,” Acta Mater., vol. 112, pp. 285–294, 2016.
[17] J. J. Wang et al., “Tunable thermal conductivity via domain structure engineering in ferroelectric thin films: A phase-field simulation,” Acta Mater., vol. 111, pp. 220–231, 2016.
[18] L. Q. Chen, “Phase-Field Models for Microstructure Evolution,” Annu. Rev. Mater. Res., vol. 32, no. 1, pp. 113–140, 2002.
[19] A. J. Bell, “Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes,” J. Appl. Phys., vol. 89, no.7, pp. 3907–3914, 2001.
[20] Y. C. Shu et al., “Constrained modeling of domain patterns in rhombohedral ferroelectrics,” Appl. Phys. Lett., vol. 92, no. 5, pp. 5–7, 2008.
[21] L. J. Li et al., “Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys,” Acta Mater., vol. 59, no. 7, pp. 2648–2655, 2011.
[22] C. H. Lei et al., “Austenite-martensite interface in shape memory alloys,” Appl. Phys. Lett., vol. 96, no. 14, pp. 2008–2011, 2010.
[23] L. J. Li et al., “Continuum theory and phase-field simulation of magnetoelectric effects in multiferroic bismuth ferrite,” J. Mech. Phys. Solids, vol. 58, no. 10, pp. 1613–1627, 2010.
[24] Y. G. Zhou et al., “An unconventional phase field modeling of domains formation and evolution in tetragonal ferroelectrics,” Sci. China Technol. Sci., vol. 59, no. 7, pp. 1059–1064, 2016.
[25] N. T. Tsou et al., “Evolution of compatible laminate domain structures in ferroelectric single crystals,” Acta Mater., vol. 61, no. 2, pp. 670–682, 2013.

[26] R. E. Loge and Z. Suo, “Nonequilibrium thermodynamics of ferroelectric domain evolution,” Acta Mater., vol. 44, no. 8, pp. 3429–3438, 1996.
[27] H. Knupfer and M. Kruzik, “A sharp interface evolutionary model for shape memory alloys,” vol. 1355, no. 11, pp. 1347–1355, 2016.
[28] M. P. Li and Q. P. Sun, “Nanoscale phase transition behavior of shape memory alloys — closed form solution of 1D effective modelling,” J. Mech. Phys. Solids, vol. 110, pp. 21–37, 2018.
[29] L. Dong et al., “On interfacial energy of macroscopic domains in polycrystalline NiTi shape memory alloys,” Int. J. Solids Struct., vol. 80, pp. 445–455, 2016.
[30] K. Tůma et al., “Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach,” J. Mech. Phys. Solids, vol. 95, pp. 284–307, 2016.
[31] L. Blank et al., “Sharp Interface Limit for a Phase Field Model in Structural Optimization,” SIAM J. Comput., vol. 54, no.3, pp. 1558–1584, 2016.
[32] J. M. Ball and R. D. James, “Fine phase mixtures as minimizers of energy,” Arch. Ration. Mech. Anal., vol. 100, no.1, pp. 13–52, 1987.
[33] K. Bhattacharya, Microstructure of martensite. Oxford University Press, 2003.
[34] Y. C. Shu and K.Bhattacharya, “Domain patterns and macroscopic behavior of ferroelectric materials,” Phil. Mag. B, vol. 81, no. 12, pp. 2021–2054, 2001.
[35] J. Y. Li and D. Liu, “On ferroelectric crystals with engineered domain configurations,” J. Mech. Phys. Solids, vol. 52, no. 8, pp. 1719–1742, 2004.
[36] Y. C. Shu and J. H. Yen, “Pattern formation in martensitic thin films,” Appl. Phys. Lett., vol. 91, no. 2, 2007.
[37] J. H. Yen et al., “A study of electromechanical switching in ferroelectric single crystals,” J. Mech. Phys. Solids, vol. 56, no.6, pp. 2117–2135, 2008.
[38] G. Arlt and P. Sasko, “Domain configuration and equilibrium size of domains in BaTiO3ceramics,” J. Appl. Phys., vol. 51, no.9, pp. 4956–4960, 1980.
[39] N. T. Tsou, “Compatible domain structures in ferroelectric single crystals,” University of Oxford, 2011.
[40] J. F. Nye, Physical properties of crystals: their representation by tensors and matrices. Oxford university press, 1985.
[41] K. Y. Wang, “Phase-Field simulation of ferroelectric domains with material inhomogeneity – A finite element approach,” National Taiwan University, 2013.
[42] M.Zgonik et al., “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B, vol. 50, no.9, pp. 5941–5949, 1994.
[43] E. Burcsu et al., “Large electrostrictive actuation of barium titanate single crystals,” J. Mech. Phys. Solids, vol. 52, no. 4, pp. 823–846, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top