跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宛蓁
研究生(外文):Tsai, Wan-Chen
論文名稱:幾丁質奈米纖維和幾丁質奈米晶體提升鹹味和鮮味感知
論文名稱(外文):Enhancing saltiness and umami perception by chitin nanofibers and chitin nanocrystals
指導教授:蔡敏郎蔡敏郎引用關係
指導教授(外文):Tsai, Min-Lang
口試委員:董崇民張克亮蔡敏郎
口試委員(外文):Don, Trong-MingChang, Ke-LiangTsai, Min-Lang
口試日期:2018-06-07
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:54
中文關鍵詞:幾丁質奈米纖維幾丁質奈米晶體鹹味鮮味
外文關鍵詞:Chitin nanofiberChitin nanocrystalSaltinessUmami
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
食鹽在食品的品質扮演著重要角色,但攝取過量的鈉,會增加罹患慢性非傳染疾病的風險,因此減少飲食中鈉的攝取量是需要的。幾丁質奈米纖維在pH < 7之環境下,其表面胺基帶正電,添加氯化鈉後,可以吸引氯離子,而增加溶液中游離的鈉離子比例,使鹹味提升,而添加幾丁聚醣、幾丁聚寡醣和N-乙醯葡萄糖胺於飲食品中可以提升鮮味。因此本研究目的為探討不同長度、直徑和去乙醯程度的幾丁質奈米纖維與幾丁質奈米晶體對氯化鈉、味精的交互作用之影響,並探討其提升鹹味與鮮味的效果。本研究利用超音波法製備幾丁質奈米纖維,以酸水解法製備幾丁質奈米晶體,幾丁質奈米纖維和去乙醯幾丁質奈米纖維直徑分別為17.24 nm和15.01 nm,長度分別為1725.05 nm和1806.60 nm,幾丁質奈米晶體直徑為16.05 nm,長度為116.91 nm。當幾丁質奈米纖維、去乙醯幾丁質奈米纖維和幾丁質奈米晶體混合氯化鈉,會隨著氯化鈉濃度的增加,使其表面電位降低,表示氯離子被吸附,進而增加游離的鈉離子,而從SEM/EDS結果顯示,氯化鈉會與幾丁質奈米纖維、去乙醯幾丁質奈米纖維和幾丁質奈米晶體結合,在感官品評結果,去乙醯幾丁質奈米纖維和幾丁質奈米晶體有較強的鹹味感受,因此當去乙醯度較高、長徑比小,可以使氯離子與表面之胺基更有效地結合,使游離的鈉離子增加,而可增強鹹味感受。以麩胺酸鈉添加於幾丁質奈米纖維、去乙醯幾丁質奈米纖維和幾丁質奈米晶體,對鹹味與鮮味都沒有提升的效果,甚至幾丁質奈米纖維和幾丁質奈米晶體對鹹味與鮮味進行感官品評,有負面之影響。
Salt plays a key role in the quality and property of foods. High sodium intake has been associated with a high risk of noncommunicable diseases. Reducing salt intake, the main source of sodium in the diet, could therefore be the important thing. At pH < 7, the surface of chitin nanofibers (CNFs) is positively charged. When NaCl is added to a CNF solution, NaCl dissolves in the solution, forming Na+ and Cl-. Because of static electricity, -NH3+ on the CNF surface adsorbs Cl that causing the ratio of free Na+ in the diffuse layer increased and then improving the saltiness. Besides, Adding chitosan, chitosan oligosaccharides or N-acetyl glucosamine to the food or drink can enhance umami. The aim of this study is to study the effect of different length, diameter and degree of deacetylation of chitin nanofibers and chitin nanocrystals (CNCs) mixing with NaCl and monosodium glutamate, also to understand the ability of chitin nanofibers and chitin nanocrystals to enhance the saltiness and umami. In this study, we performed ultrasonication on the CNFs and acid hydrolysis on the CNCs. Chitin nanofibers, deacetylated chitin nanofibers (DACNFs) and chitin nanocrystals displayed a diameter of 17.24, 15.01 and 16.05 nm, respectively. The length of CNFs, DACNFs and CNCs is 1725.05, 1806.60 and 116.91 nm, respectively. After NaCl was added to the CNF, DACNF and CNC solution, their zeta potentials decreased as the concentrations of NaCl increased. It proves that Cl- adsorbed and increased the ratio of free Na+. SEM/EDS demonstrated NaCl combined with CNFs, DACNFs and CNCs. The sensory evaluation of CNFs, DACNFs and CNCs that added with 0.3% NaCl showed that DACNFs and CNCs tasted saltier compared with 0.3% NaCl. Thus, higher degree of deacetylation or low aspect ratio can make -NH3+ in the CNF or CNC adsorbed Cl- effectively, causing the ratio of free Na+ increased and then improving the saltiness. The sensory evaluation of CNFs, DACNFs and CNCs that added with monosodium glutamate showed that saltiness and umami can’t improve. Especially, the salty and umami sensory evaluation of CNFs and CNCs had negative effects.
摘要 I
Abstract II
目次 III
表目錄 VI
圖目錄 VII
一、前言 1
二、文獻回顧 3
2.1幾丁質 3
2.1.1幾丁質之結構 3
2.1.2幾丁質之製備 3
2.1.3幾丁質之特性與應用 3
2.2幾丁質奈米纖維 4
2.2.1奈米纖維之定義 4
2.2.2幾丁質奈米纖維之結構 4
2.3幾丁質奈米纖維之製備 5
2.3.1機械拆卸法 5
2.3.1.1研磨法 5
2.3.1.2超音波震盪法 5
2.3.1.3星爆系統 6
2.3.1.4動態高壓均質法 6
2.3.1.5微射流法 6
2.3.2化學修飾法 6
2.3.2.1酸水解法 6
2.3.2.2 TEMPO介導氧化反應 7
2.3.2.3順丁烯二酸酐酯化反應 7
2.3.2.4部份去乙醯化 7
2.3.3靜電紡絲法 7
2.4幾丁質奈米纖維之特性與應用 8
2.4.1生醫方面之應用 8
2.4.2農業之應用 8
2.4.3材料方面之應用 9
2.4.4鹹味方面之應用 9
2.5幾丁質奈米晶體 9
2.5.1幾丁質奈米晶體之結構 9
2.5.2幾丁質奈米晶體之製備 10
2.5.3幾丁質奈米晶體之特性與應用 10
2.6食鹽 11
2.7減鈉之方法 11
2.7.1認知層面 11
2.7.2化學層面 12
2.7.3食品之結構層面 12
2.8鮮味 13
三、實驗材料 15
3.1實驗材料 15
3.2.藥品 15
3.3.儀器設備 15
四、實驗架構 17
五、實驗方法 18
5.1魷魚軟骨前處理 18
5.2 β-幾丁質之製備 18
5.3幾丁質奈米纖維與去乙醯幾丁質奈米纖維之製備 18
5.4幾丁質奈米晶體之製備 18
5.5物化特性之分析 19
5.5.1穿透式電子顯微鏡 19
5.5.2官能基團和去乙醯度之測定 19
5.5.3結晶度測定 19
5.5.4幾丁質奈米纖維與奈米晶體產率 20
5.6幾丁質奈米纖維和幾丁質奈米晶體氯化鈉溶液製備 20
5.7幾丁質奈米纖維和幾丁質奈米晶體氯化鈉溶液之特性分析 20
5.7.1掃描式電子顯微鏡/能量色散X-射線光譜分析(SEM/EDS) 20
5.7.2界面電位測定 20
5.8幾丁質奈米纖維和幾丁質奈米晶體麩胺酸鈉溶液之界面電位測定 21
5.9感官品評 21
5.10統計分析 21
六、結果與討論 22
6.1幾丁質奈米纖維與幾丁質奈米晶體物化特性 22
6.1.1產率 22
6.1.2形態與直徑長度分布 22
6.1.3官能基團分析與去乙醯度 23
6.1.4結晶度 24
6.2幾丁質奈米纖維和幾丁質奈米晶體氯化鈉溶液之特性 24
6.2.1形態和SEM/EDS分析 24
6.2.2界面電位 25
6.3幾丁質奈米纖維和幾丁質奈米晶體麩胺酸鈉溶液之界面電位 25
6.4感官品評 26
七、結論 28
八、參考文獻 29
九、表 36
十、圖 40
附錄 53
郭芷良,2017,以物理性方法製備幾丁質奈米纖維,國立台灣海洋大學食品科學系碩士論文,基隆,臺灣。
闞建全、駱錫能、盧義發、邱思魁、吳柏青、陳振芳(2007)。常見鮮味劑及其應用。新文京開發出版股份有限公司。臺北,臺灣。pp. 374–375。
鍾澤裕、曾志正(2014)。喝茶回甘的分子機制。農林學報,63,91–97。
Aklog, Y. F., Nagae, T., Izawa, H., Morimoto, M., Saimoto, H., & Ifuku, S. (2016). Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment. Carbohydrate Polymers, 153, 55-59.
Albarracín, W., Sánchez, I. C., Grau, R., & Barat, J. M. (2011). Salt in food processing; usage and reduction: a review. International Journal of Food Science & Technology, 46, 1329-1336.
Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Galed, G., & Heras, Á. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3(2), 203-230.
Batenburg, M., & van der Velden, R. (2011). Saltiness enhancement by savory aroma compounds. Journal of Food Science, 76, S280-S288.
Bibbins-Domingo, K., Chertow, G. M., Coxson, P. G., Moran, A., Lightwood, J. M., Pletcher, M. J., & Goldman, L. (2010). Projected effect of dietary salt reductions on future cardiovascular disease. New England Journal of Medicine, 362, 590-599.
Busch, J. L., Yong, F., & Goh, S. M. (2013). Sodium reduction: Optimizing product composition and structure towards increasing saltiness perception. Trends in Food Science & Technology, 29, 21-34.
Campagnol, P. C., dos Santos, B. A., Terra, N. N., & Pollonio, M. A. (2012). Lysine, disodium guanylate and disodium inosinate as flavor enhancers in low-sodium fermented sausages. Meat Science, 91, 334-338.
Chang, S. H., Lin, H. T., Wu, G. J., & Tsai, G. J. (2015). pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydrate Polymers, 134, 74-81.
Chaudhari, N., Landin, A. M., & Roper, S. D. (2000). A metabotropic glutamate receptor variant functions as a taste receptor. Nature Neuroscience, 3, 113-119.
Chaudhari, N., Pereira, E., & Roper, S. D. (2009). Taste receptors for umami: the case for multiple receptors. The American Journal of Clinical Nutrition, 90, 738S-742S.
Chen, C., Li, D., Yano, H., & Abe, K. (2014). Dissolution and gelation of α-chitin nanofibers using a simple NaOH treatment at low temperatures. Cellulose, 21, 3339-3346.
Chen, P.-Y., Lin, A. Y.-M., McKittrick, J., & Meyers, M. A. (2008). Structure and mechanical properties of crab exoskeletons. Acta Biomaterialia, 4, 587-596.
Cuong, H. N., Minh, N. C., Van Hoa, N., & Trung, T. S. (2016). Preparation and characterization of high purity β-chitin from squid pens (Loligo chenisis). International Journal of Biological Macromolecules, 93, 442-447.
Desmond, E. (2006). Reducing salt: A challenge for the meat industry. Meat Science, 74, 188-196.
Ding, F., Deng, H., Du, Y., Shi, X., & Wang, Q. (2014). Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 6, 9477-9493.
Dotsch, M., Busch, J., Batenburg, M., Liem, G., Tareilus, E., Mueller, R., & Meijer, G. (2009). Strategies to reduce sodium consumption: A food industry perspective. Critical Review in Food Science and Nutrition, 49, 841-851.
Fan, Y., Saito, T., & Isogai, A. (2008a). Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules, 9, 192–198.
Fan, Y., Saito, T., & Isogai, A. (2008b). Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules, 9, 1919–1923.
Fan, Y., Saito, T., & Isogai, A. (2010). Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydrate Polymers, 79, 1046-1051.
Fiamingo, A., Delezuk, J. A. d. M., Trombotto, S., David, L., & Campana-Filho, S. P. (2016). Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of beta-chitin. Ultrasonics Sonochemistry, 32, 79-85.
Freire, T. V. M., Freire, D. O., Souza, V. R., Gonçalves, C. S., Carneiro, J. d. D. S., Nunes, C. A., & Pinheiro, A. C. M. (2014). Salting potency and time‐intensity profile of microparticulated sodium chloride in shoestring potatoes. Journal of Sensory Studies, 30, 1-9.
Goodrich, J. D., & Winter, W. T. (2007). α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules, 8, 252-257.
Han, L. K., Kimura, Y., & Okuda, H. (1999). Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet. International Journal of Obesity and Related Metabolic Disorders, 23, 174-179.
Homayoni, H., Ravandi, S. A. H., & Valizadeh, M. (2009). Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77, 656-661.
Hsueh, C.-Y., Tsai, M.-L., & Liu, T. (2017). Enhancing saltiness perception using chitin nanofibers when curing tilapia fillets. LWT - Food Science and Technology, 86, 93-98.
Hu, X., Du, Y., Tang, Y., Wang, Q., Feng, T., Yang, J., & Kennedy, J. F. (2007). Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers, 70, 451-458.
Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., & Yano, H. (2009). Preparation of chitin nanofibers with a uniform width as alpha-chitin from crab shells. Biomacromolecules, 10, 1584-1588.
Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., & Yano, H. (2011). Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydrate Polymers, 84, 762-764.
Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: preparations, modifications, and applications. Nanoscale, 4, 3308-3318.
Israr, T., Rakha, A., Sohail, M., Rashid, S., & Shehzad, A. (2016). Salt reduction in baked products: Strategies and constraints. Trends in Food Science & Technology, 51, 98-105.
Izumi, R., Komada, S., Ochi, K., Karasawa, L., Osaki, T., Murahata, Y., Tsuka, T., Imagawa, T., Itoh, N., Okamoto, Y., Izawa, H., Morimoto, M., Saimoto, H., Azuma, K., & Ifuku, S. (2015). Favorable effects of superficially deacetylated chitin nanofibrils on the wound healing process. Carbohydrate Polymers, 123, 461-467.
Jiang, W.-J., Tsai, M.-L., & Liu, T. (2017). Chitin nanofiber as a promising candidate for improved salty taste. LWT-Food Science and Technology, 75, 65-71.
Keast, R. S. J., & Breslin, P. A. S. (2003). An overview of binary taste–taste interactions. Food Quality and Preference, 14, 111-124.
Kjartansson, G. T., Zivanovic, S., Kristbergsson, K., & Weiss, J. (2006). Sonication-assisted extraction of chitin from shells of fresh water prawns (Macrobrachium rosenbergii). Journal of Agricultural and Food Chemistry, 54, 3317-3323.
Koliandris, A.-L., Morris, C., Hewson, L., Hort, J., Taylor, A. J., & Wolf, B. (2010). Correlation between saltiness perception and shear flow behaviour for viscous solutions. Food Hydrocolloids, 24, 792-799.
Koliandris, A., Lee, A., Ferry, A.-L., Hill, S., & Mitchell, J. (2008). Relationship between structure of hydrocolloid gels and solutions and flavour release. Food Hydrocolloids, 22, 623-630.
Kose, R., & Kondo, T. (2011). Favorable 3D-network formation of chitin nanofibers dispersed in water prepared using aqueous counter collision. Sen'i Gakkaishi, 67, 91-95.
Krajewska B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35, 126–39.
Kumari, R., & Dutta, P. (2010). Physicochemical and biological activity study of genipin-crosslinked chitosan scaffolds prepared by using supercritical carbon dioxide for tissue engineering applications. International Journal of Biological Macromolecules, 46, 261-266.
Kurihara, K. (2015). Umami the fifth basic taste: history of studies on receptor mechanisms and role as a food flavor. BioMed Research International, 2015, Article ID 189402
Lindemann, B. (2000). A taste for umami. Nature Neuroscience, 3, 99–100.
Lindemann, B. (2001). Receptors and transduction in taste. Nature, 413, 219-225.
Lu, Y., Sun, Q., She, X., Xia, Y., Liu, Y., Li, J., & Yang, D. (2013). Fabrication and characterisation of alpha-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydrate Polymers, 98, 1497-1504.
Ma, B., Qin, A., Li, X., Zhao, X., & He, C. (2014). Structure and properties of chitin whisker reinforced chitosan membranes. International Journal of Biological Macromolecules, 64, 341-346.
Maeda, Y., Jayakumar, R., Nagahama, H., Furuike, T., & Tamura, H. (2008). Synthesis, characterization and bioactivity studies of novel beta-chitin scaffolds for tissue-engineering applications. International Journal of Biological Macromolecules, 42, 463-467.
Mincea, M., Negrulescu, A., & Ostafe, V. (2012). Preparation, modification, and applications of chitin nanowhiskers: A review. Reviews on Advanced Materials Science, 30, 225-242.
Moncada, M., Astete, C., Sabliov, C., Olson, D., Boeneke, C., & Aryana, K. J. (2015). Nano spray-dried sodium chloride and its effects on the microbiological and sensory characteristics of surface-salted cheese crackers. Journal of Dairy Science, 98, 5946-5954.
Mosca, A. C., Andriot, I., Guichard, E., & Salles, C. (2015). Binding of Na+ ions to proteins: Effect on taste perception. Food Hydrocolloids, 51, 33-40.
Mushi, N. E., Butchosa, N., Salajkova, M., Zhou, Q., & Berglund, L. A. (2014). Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydrate Polymers, 112, 255-263.
Mushi, N. E., Kochumalayil, J., Cervin, N. T., Zhou, Q., & Berglund, L. A. (2016). Nanostructurally controlled hydrogel based on small‐diameter native chitin nanofibers: Preparation, structure, and properties. ChemSusChem, 9, 989-995.
Neyraud, E., Prinz, J., & Dransfield, E. (2003). NaCl and sugar release, salivation and taste during mastication of salted chewing gum. Physiology and Behavior, 79, 731-737.
Nishiyama, Y., Noishiki, Y., & Wada M. (2011). X-ray structure of anhydrous β-chitin at 1 Å resolution. Macromolecules, 44, 950–957.
Paillet, M., & Dufresne, A. (2001). Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules, 34, 6527-6530.
Panouillé, M., Saint-Eve, A., de Loubens, C., Déléris, I., & Souchon, I. (2011). Understanding of the influence of composition, structure and texture on salty perception in model dairy products. Food Hydrocolloids, 25, 716-723.
Pereira, A. G., Muniz, E. C., & Hsieh, Y.-L. (2014). Chitosan-sheath and chitin-core nanowhiskers. Carbohydrate Polymers, 107, 158-166.
Phan, V. A., Yven, C., Lawrence, G., Chabanet, C., Reparet, J. M., & Salles, C. (2008). In vivo sodium release related to salty perception during eating model cheeses of different textures. International Dairy Journal, 18, 956-963.
Philibert, T., Lee, B. H., & Fabien, N. (2017). Current status and new perspectives on chitin and chitosan as functional biopolymers. Applied Biochemistry and Biotechnology, 181, 1314-1337.
Quilaqueo, M., Duizer, L., & Aguilera, J. M. (2015). The morphology of salt crystals affects the perception of saltiness. Food Research International, 76, 675-681.
Raabe, D., Sachs, C., & Romano, P. (2005). The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Materialia, 53, 4281-4292.
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603-632.
Rodrigues, D. M., de Souza, V. R., Mendes, J. F., Nunes, C. A., & Pinheiro, A. C. M. (2016). Microparticulated salts mix: An alternative to reducing sodium in shoestring potatoes. LWT-Food Science and Technology, 69, 390-399.
Rubentheren, V., Ward, T. A., Chee, C. Y., & Tang, C. K. (2015). Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydrate Polymers, 115, 379-387.
Salaberria, A. M., Fernandes, S. C., Diaz, R. H., & Labidi, J. (2015). Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against a niger. Carbohydrate Polymers, 116, 286-291.
Salaberria, A. M., Labidi, J., & Fernandes, S. C. M. (2014). Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chemical Engineering Journal, 256, 356-364.
Sasaki, K., Miyaki, T., & Nagasaki, H. (2014). Food or drink with enhanced salty taste and/or umami and manufacturing method therefor, salty taste and/or umami-enhancing composition for food or drink, and method for enhancing salty taste and/or umami of food or drink. U.S. Patent WO2014061705A1.
Sawada, D., Nishiyama, Y., Langan, P., Forsyth, V. T., Kimura, S., & Wada, M. (2012). Water in crystalline fibers of dihydrate beta-chitin results in unexpected absence of intramolecular hydrogen bonding. PLoS One, 7, e39376.
Shimahara, K., & Takiguchi, Y. (1988). Preparation of crustacean chitin. Methods in Enzymology, 161, 417-423.
Sikorski, P., Hori, R., & Wada, M. (2009). Revisit of α-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules, 10, 1100–1105.
Singh-Ackbarali, D., & Maharaj, R. (2014). Sensory evaluation as a tool in determining acceptability of innovative products developed by undergraduate students in food science and technology at the university of Trinidad and Tobago. Journal of Curriculum and Teaching, 3, 10.
Sriupayo, J., Supaphol, P., Blackwell, J., & Rujiravanit, R. (2005). Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydrate Polymers, 62, 130-136.
Suenaga, S., Nikaido, N., Totani, K., Kawasaki, K., Ito, Y., Yamashita, K., & Osada, M. (2016). Effect of purification method of beta-chitin from squid pen on the properties of beta-chitin nanofibers. International Journal of Biological Macromolecules, 91, 987-993.
Tsai, M. L., Tseng, L. Z., & Chen, R. H. (2009). Two-stage microfluidization combined with ultrafiltration treatment for chitosan mass production and molecular weight manipulation. Carbohydrate Polymers, 77, 767-772.
Tzoumaki, M. V., Moschakis, T., & Biliaderis, C. G. (2010). Metastability of nematic gels made of aqueous chitin nanocrystal dispersions. Biomacromolecules, 11, 175-181.
Tzoumaki, M. V., Moschakis, T., & Biliaderis, C. G. (2013). Effect of soluble polysaccharides addition on rheological properties and microstructure of chitin nanocrystal aqueous dispersions. Carbohydrate Polymers, 95, 324-331.
Tzoumaki, M. V., Moschakis, T., Kiosseoglou, V., & Biliaderis, C. G. (2011). Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocolloids, 25, 1521-1529.
Uneyama, H., Kawai, M., Sekine-Hayakawa, Y., & Torii, K. (2009). Contribution of umami taste substances in human salivation during meal. Journal of Medical Investigation, 56, 197-204.
Webster, J. L., Dunford, E. K., Hawkes, C., & Neal, B. C. (2011). Salt reduction initiatives around the world. Journal of Hypertension, 29, 1043-1050.
WHO (World Health Organization) (2016). Salt reduction. Retrieved February 10, 2016, from http://www.who.int/mediacentre/factsheets/fs393/en/.
Wijesena, R. N., Tissera, N., Kannangara, Y. Y., Lin, Y., Amaratunga, G. A., & de Silva, K. M. (2015). A method for top down preparation of chitosan nanoparticles and nanofibers. Carbohydrate Polymers, 117, 731-738.
Yano, I. (1972). A histochemical study on the exocuticle with respect to its calcification and associated epidermal cells in a shore crab. Nippon Suisan Gakkaishi, 38, 733–739.
Yen, M.-T., Yang, J.-H., & Mau, J.-L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75, 15-21.
Yi, C., Tsai, M. L., & Liu, T. (2017). Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception. Carbohydrate Polymers, 172, 246-254.
Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13, 1133-1174.
Zeng, J. B., He, Y. S., Li, S. L., & Wang, Y. Z. (2012). Chitin whiskers: an overview. Biomacromolecules, 13, 1-11.
Zhang, L., & Peterson, D. G. (2018). Identification of a novel umami compound in potatoes and potato chips. Food Chemistry, 240, 1219-1226.
Zhang, X., & Rolandi, M. (2017). Engineering strategies for chitin nanofibers. Journal of Materials Chemistry B, 5, 2547-2559.
Zhang, Y., Venkitasamy, C., Pan, Z., & Wang, W. (2013). Recent developments on umami ingredients of edible mushrooms – A review. Trends in Food Science & Technology, 33, 78-92.
Zhang, Y., Xue, C., Xue, Y., Gao, R., & Zhang, X. (2005). Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydrate Research, 340, 1914-1917.
Zhao, H.-P., Feng, X.-Q., & Gao, H. (2007). Ultrasonic technique for extracting nanofibers from nature materials. Applied Physics Letters, 90, 073112.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top