王慧菱, 譚醒朝, & 張曉芬. (2005). SARS 疾病災難事件對台灣生技醫療產業股價影響之研究. 健康管理學刊, 3(2), 99-119.
沈中華, & 李建然. (2000). 事件研究法: 財務與會計實證研究必備. 華泰文化.
李惠妍. (2003). 類神經網路與迴歸模式在台股指數期貨預測之研究. 成功大學高階管理碩士在職專班 (EMBA) 學位論文, 1-56.李惠妍, 吳宗正, & 溫敏杰. (2006). 迴歸模式與類神經網路在台股指數期貨預測之研究.
林惠娜, & 姜淑美. (2007). 重大事件對台灣股匯市影響之研究-跳躍-擴散模型之應用. 朝陽商管評論, 6(2), 29-55.胡桂豪 (2013)應用資料探勘偵測盈餘管理. 2013. PhD Thesis.
連立川, & 葉怡成. (2008). 以遺傳神經網路建構台灣股市買賣決策系統之研究. 資訊管理學報, 15(1), 29-51.凌明智. (2004). 重大災難事件對股票市場之影響-以 SARS 疾病災難事件對台灣金融業為例, 國立高雄第一科技大學金融營運系碩士論文.黃華山, & 邱一勳. (2005). 類神經網路預測台灣 50 股價指數之研究. 資訊, 科技與社會學報, 5, 19-42.
陳清山, 陳信安, 郭章淵 (2007) 以類神經網路及主成份分析法探討臺中市中小學校舍耐震模式, 行政院國家科學委員會補助專題研究計畫
葉怡成. (2002). 類神經網路模式應用與實作, 第七版, 儒林圖書有限公司.
葉怡成. (2002). 應用類神經網路. 台北: 儒林圖書有限公司.
蔡穗馥, & 吳億亭. (2013). 金融危機事件對台灣股票市場的報酬與波動性之影響. 東吳經濟商學學報, 81, 69-93.Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056.
Boehmer, E., Masumeci, J., & Poulsen, A. B. (1991). Event-study methodology under conditions of event-induced variance. Journal of financial economics, 30(2), 253-272.
Breiman, L. (2001). Random forests. Machine Learning, 45 (1), 5–32 .
Cheng, P., Quek, C., & Mah, M. L. (2007). Predicting the impact of anticipatory action on US stock market—An event study using ANFIS (a neural fuzzy model). Computational Intelligence, 23(2), 117-141.
Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1), 307-319.
Krauss, C.; Do, X.A.; Huck, N. (2017) Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. Eur. J. Oper. Res., 259, 689–702.
L.J. van der Maaten , E.O. Postma , H.J. van den Herik , (2009) Dimensionality reduction: a comparative review, J. Mach. Learn. Res. 10 (1-41) 66–71 .
Moritz, B. , & Zimmermann, T. (2014). Deep conditional portfolio sorts: The relation between past and future stock returns . Working paper, Ludwig Maximilian Uni- versity Munich and Harvard University
Nicholas Apergis & Panagiotis G. Artikis, (2016). Foreign Exchange Risk, Equity Risk Factors and Economic Growth, Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 44(4), pages 425-445, December.
Pantzalis, C., Stangeland, D. A., & Turtle, H. J. (2000). Political elections and the resolution of uncertainty: the international evidence. Journal of banking & finance, 24(10), 1575-1604.
Podsiadlo, M., & Rybinski, H. (2016). Financial time series forecasting using rough sets with time-weighted rule voting. Expert Systems with Applications, 66, 219-233.
Tan, C. N. (1993, November). Trading a NYSE-stock with a simple artificial neural network-based financial trading system. In Artificial Neural Networks and Expert Systems, 1993. Proceedings., First New Zealand International Two-Stream Conference on (pp. 294-295). IEEE.
Wong, W. Y., & Hooy, C. W. (2016). The Impact of Election on Stock Market Returns of Government-Owned Banks: The Case of Indonesia, Malaysia and Thailand. Asian Journal of Business and Accounting, 9(1).
Zhong X., D. Enke (2017). Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applications, 67, pp. 126-139.
Zhong X., D. Enke (2017). A comprehensive cluster and classification mining procedure for daily stock market return forecasting Neurocomputing, 267, pp. 152-168.