|
1. Beck, M. H., Haumesser, J. K., Kuhn, J., Altschuler, J., Kuhn, A. A., & van Riesen, C. (2016). Short- and long-term dopamine depletion causes enhanced beta oscillations in the cortico-basal ganglia loop of parkinsonian rats. Exp Neurol, 286, 124-136. doi: 10.1016/j.expneurol.2016.10.005 2. Berke, J. D., Okatan, M., Skurski, J., & Eichenbaum, H. B. (2004). Oscillatory entrainment of striatal neurons in freely moving rats. Neuron, 43(6), 883-896. doi: 10.1016/j.neuron.2004.08.035 3. Birkmayer, W., & Riederer, P. (1983a). How to care for peoplewith Parkinson’s disease. doi: 10.1007/978-3-7091-7635-1 4. Birkmayer, W., & Riederer, P. (1983b). Clinical Course of Parkinson’s Disease. 152-155. doi: 10.1007/978-3-7091-7635-1_5 5. Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr Opin Neurobiol, 17(6), 656-664. doi: 10.1016/j.conb.2007.12.001 6. Buzsaki, G., Bickford, R. G., Ponomareff, G., Thal, L. J., Mandel, R., & Gage, F. H. (1988). Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. The Journal of Neuroscience, 8(11), 4007-4026. doi: 10.1523/jneurosci.08-11-04007.1988 7. Chen, C. C., Hsu, Y. T., Chan, H. L., Chiou, S. M., Tu, P. H., Lee, S. T., . . . Brown, P. (2010). Complexity of subthalamic 13-35 Hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson's disease. Exp Neurol, 224(1), 234-240. doi: 10.1016/j.expneurol.2010.03.015 8. de Lau, L. M. L., & Breteler, M. M. B. (2006). Epidemiology of Parkinson's disease. The Lancet Neurology, 5(6), 525-535. doi: 10.1016/s1474-4422(06)70471-9 9. Dejean C, Gross CE, Bioulac B, Boraud T (2007) Synchronous high-voltage spindles in the cortex-basal ganglia network of awake and unrestrained rats. Eur J Neurosci 25:772–784. 10. Deransart, C., Hellwig, B., Heupel-Reuter, M., Leger, J.-F., Heck, D., & Lucking, C. H. (2003). Single-unit Analysis of Substantia Nigra Pars Reticulata Neurons in Freely Behaving Rats with Genetic Absence Epilepsy. Epilepsia, 44(12), 1513-1520. doi: 10.1111/j.0013-9580.2003.26603.x 11. Deumens, R., Blokland, A. and Prickaerts, J.(2002). Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175(2):303-317 12. Eusebio, A., & Brown, P. (2009). Synchronisation in the beta frequency-band--the bad boy of parkinsonism or an innocent bystander? Exp Neurol, 217(1), 1-3. doi: 10.1016/j.expneurol.2009.02.003 13. Fritsch, T., Smyth, K. A., Wallendal, M. S., Hyde, T., Leo, G., & Geldmacher, D. S. (2012). Parkinson disease: research update and clinical management. South Med J, 105(12), 650-656. doi: 10.1097/SMJ.0b013e318273a60d 14. Ge, S., Yang, C., Li, M., Li, J., Chang, X., Fu, J., . . . Gao, G. (2012). Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats. Brain Res, 1465, 66-79. doi: 10.1016/j.brainres.2012.05.002 15. Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci, 30(7), 357-364. doi: 10.1016/j.tins.2007.05.004 16. Hauser R: Parkinson Disease. Medscape. Retrieved 10/28/2013 from http://emedicine.medscape.com/article/1831191-overview. (2013) 17. Jain, S. (2011). Multi-organ autonomic dysfunction in Parkinson disease. Parkinsonism Relat Disord, 17(2), 77-83. doi: 10.1016/j.parkreldis.2010.08.022 18. Khoshbouei, H., Sen, N., Guptaroy, B., Johnson, L., Lund, D., Gnegy, M. E., . . . Javitch, J. A. (2004). N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol, 2(3), E78. doi: 10.1371/journal.pbio.0020078 19. Kuhn, A. A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. Eur J Neurosci, 23(7), 1956-1960. doi: 10.1111/j.1460-9568.2006.04717.x 20. Leventhal, D. K., Gage, G. J., Schmidt, R., Pettibone, J. R., Case, A. C., & Berke, J. D. (2012). Basal ganglia beta oscillations accompany cue utilization. Neuron, 73(3), 523-536. doi: 10.1016/j.neuron.2011.11.032 21. Li, Q., Ke, Y., Chan, D. C., Qian, Z. M., Yung, K. K., Ko, H., . . . Yung, W. H. (2012). Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron, 76(5), 1030-1041. doi: 10.1016/j.neuron.2012.09.032 22. Lim, S. Y., & Lang, A. E. (2010). The nonmotor symptoms of Parkinson's disease--an overview. Mov Disord, 25 Suppl 1, S123-130. doi: 10.1002/mds.22786 23. Loukas, C., & Brown, P. (2004). Online prediction of self-paced hand-movements from subthalamic activity using neural networks in Parkinson's disease. J Neurosci Methods, 137(2), 193-205. doi: 10.1016/j.jneumeth.2004.02.017 24. Magill, P. J., Sharott, A., Harnack, D., Kupsch, A., Meissner, W., & Brown, P. (2005). Coherent spike-wave oscillations in the cortex and subthalamic nucleus of the freely moving rat. Neuroscience, 132(3), 659-664. doi: 10.1016/j.neuroscience.2005.01.006 25. Oswal, A., Brown, P., & Litvak, V. (2013). Synchronized neural oscillations and the pathophysiology of Parkinson's disease. Curr Opin Neurol, 26(6), 662-670. doi: 10.1097/WCO.0000000000000034 26. Pan, M. K., Kuo, S. H., Tai, C. H., Liou, J. Y., Pei, J. C., Chang, C. Y., . . . Kuo, C. C. (2016). Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control. J Clin Invest, 126(12), 4516-4526. doi: 10.1172/JCI88170 27. Pan, M. K., Tai, C. H., Liu, W. C., Pei, J. C., Lai, W. S., & Kuo, C. C. (2014). Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits. J Clin Invest, 124(10), 4629-4641. doi: 10.1172/JCI75587 28. Paquette, M. A., Martinez, A. A., Macheda, T., Meshul, C. K., Johnson, S. W., Berger, S. P., & Giuffrida, A. (2012). Anti-dyskinetic mechanisms of amantadine and dextromethorphan in the 6-OHDA rat model of Parkinson's disease: role of NMDA vs. 5-HT1A receptors. Eur J Neurosci, 36(9), 3224-3234. doi: 10.1111/j.1460-9568.2012.08243.x 29. Paz, J. T., Deniau, J. M., & Charpier, S. (2005). Rhythmic bursting in the cortico-subthalamo-pallidal network during spontaneous genetically determined spike and wave discharges. J Neurosci, 25(8), 2092-2101. doi: 10.1523/JNEUROSCI.4689-04.2005 30. Pogosyan, A., Yoshida, F., Chen, C. C., Martinez-Torres, I., Foltynie, T., Limousin, P., . . . Brown, P. (2010). Parkinsonian impairment correlates with spatially extensive subthalamic oscillatory synchronization. Neuroscience, 171(1), 245-257. doi: 10.1016/j.neuroscience.2010.08.068 31. Sherer, T. B., Chowdhury, S., Peabody, K., & Brooks, D. W. (2012). Overcoming obstacles in Parkinson's disease. Mov Disord, 27(13), 1606-1611. doi: 10.1002/mds.25260 32. Slaght, S. J., Paz, T., Chavez, M., Deniau, J. M., Mahon, S., & Charpier, S. (2004). On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy. J Neurosci, 24(30), 6816-6825. doi: 10.1523/JNEUROSCI.1449-04.2004 33. Stein, E., & Bar-Gad, I. (2013). beta oscillations in the cortico-basal ganglia loop during parkinsonism. Exp Neurol, 245, 52-59. doi: 10.1016/j.expneurol.2012.07.023 34. Takeda, R., Ikeda, T., Tsuda, F., Abe, H., Hashiguchi, H., Ishida, Y., & Nishimori, T. (2005). Unilateral lesions of mesostriatal dopaminergic pathway alters the withdrawal response of the rat hindpaw to mechanical stimulation. Neurosci Res, 52(1), 31-36. doi: 10.1016/j.neures.2005.01.005 35. Timmermann, L., & Fink, G. R. (2011). Pathological network activity in Parkinson's disease: from neural activity and connectivity to causality? Brain, 134(Pt 2), 332-334. doi: 10.1093/brain/awq381 36. Wiest, M. C., & Nicolelis, M. A. (2003). Behavioral detection of tactile stimuli during 7-12 Hz cortical oscillations in awake rats. Nat Neurosci, 6(9), 913-914. doi: 10.1038/nn1107 37. Williams, D., Kuhn, A., Kupsch, A., Tijssen, M., van Bruggen, G., Speelman, H., . . . Brown, P. (2005). The relationship between oscillatory activity and motor reaction time in the parkinsonian subthalamic nucleus. Eur J Neurosci, 21(1), 249-258. doi: 10.1111/j.1460-9568.2004.03817.x 38. Yang, C., Zhang, J. R., Chen, L., Ge, S. N., Wang, J. L., Yan, Z. Q., . . . Gao, G. D. (2015). High frequency stimulation of the STN restored the abnormal high-voltage spindles in the cortex and the globus pallidus of 6-OHDA lesioned rats. Neurosci Lett, 595, 122-127. doi: 10.1016/j.neulet.2015.04.011 39. C. C. McIntyre, W. M. Grill, D. L. Sherman, and N. V. Thakor, (2004)“Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition,” Journal of Neurophysiology, vol.91, no. 4, pp. 1457–1469, 2004. 40. A. A. Kuhn, F. Kempf, C. Brucke et al., (2008) “High-frequency ¨stimulation of the subthalamic nucleus suppresses oscillatory
|