跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 14:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張文瑄
研究生(外文):Wen-Hsuan Chang
論文名稱:模擬壓力圓筒板結構銲接變形與殘餘應力及銲後之挫曲強度分析
論文名稱(外文):Modeling and analysis of welding-induced distortion and residual stress in pressure vessel and Its effect on buckling strength
指導教授:關百宸
指導教授(外文):Pai-Chen Guan
口試委員:楊子儀蔡宗亮關百宸
口試委員(外文): Pai-Chen Guan
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:112
中文關鍵詞:銲接銲後變形殘餘應力挫曲強度圓筒殼
外文關鍵詞:weldpost-weld deformationresidual stressbuckling strengthcylindrical shell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
銲接為造船界廣泛使用來連接部件的技術,銲接種類可以分為固態銲接及融態銲接,船廠較常使用的是屬於融態銲接的金屬遮蔽銲接(SMAW)及氣體保護銲接(GMAW),由於融態銲接需要對銲件輸入巨大熱量,這將會導致銲件變形,並且導致銲件內部產生殘餘應力以及銲接變形,影響部件銲接後的幾何與強度。本文以有限元素分析軟體模擬板材銲接過程以及造成的殘餘應力、銲接變形,並討論板材銲接在後的挫曲強度。有限元素模擬分成兩個部分:第一步使用實體單元模擬板材銲接加熱的過程,以不同溫度下的材料性質如楊氏模量、降伏強度、柏松比等,模擬材料加熱過程材料性質的改變,並研究平板結構與圓筒殼結構銲接後的變形,找出銲道附近的位移及應力的分佈模式;第二步將銲接導致的位移分佈及殘餘應力分佈加載至圓筒殼結構上,研究受到銲接變形及殘餘應力影響的圓筒殼挫曲強度將如何改變。我們藉由分別以實體單元與板單元進行挫曲強度分析,知道以板單元簡化模型趨向於高估銲後挫曲強度;藉由模擬不同銲接溫度造成的影響,我們確認了銲接溫度會增加銲後變形,並擴大殘餘應力分佈的範圍,進而影響銲後挫曲強度,其行為趨向隨銲接溫度增加而挫曲強度下降;藉由分析不同程度簡化的圓筒殼模型,發現在僅考慮銲後變形的簡化模型,傾向低估具有較低波數模態的挫曲強度,而高估具有較高波數模態的挫曲強度。
The welding technique, such as gas metal arc welding (GMAW) and shield metal arc welding (SMAW), are commonly used to connect the components of ship in shipyard. During the welding process, the large input of heat causes the distortion and the generation of residual stress of the weldment. Also, it affects the geometry and strength of the component after welding. In this thesis, we simulate the process of plate welding by commercial finite element software, ABAQUS, and we analyze the post-weld residual stress distribution and distortion. We further study the buckling strength of the cylindrical shell after welding. We first perform the welding analysis of flat plate and compare the numerical results with experimental results to verify our simulation process. Then, we performed the analysis of buckling strength of cylindrical shell from the previous experience. There are two steps in the cylindrical shell welding analysis: First, we use coupled temperature-displacement elements to simulate the heating process. The change of the material properties at different temperature, such as Young’s modulus, yield strength, Poisson’s ratio, etc., are considered. And we study the distortion of cylindrical shell after welding, and find out the distribution pattern of distortion and residual stress near the weld bead. Second, we apply the welding-induced distortion and residual stress on the cylindrical shell to perform the buckling analysis, and discuss the influence of the welding-induced distortion and residual stress on the buckling strength of the cylindrical shell. According to the buckling strength analysis of cylindrical shell by solid-element model and plate element model, we know that the plate-element model tends to overestimate the post-welding buckling strength of cylindrical shell. The results of welding simulation in different temperature show that magnitude of deformation and the distribution range of residual stress of the weldment increase as the welding temperature increase. And the buckling strength of cylindrical shell decreases when the welding temperature is increased. By analyzing the different kinds of simplified model of cylindrical shell, we found that the buckling strength of the cylindrical shell which only considers post-welding deformation is underestimated when the buckling wavenumber is low, and the buckling strength is overestimated when the buckling wavenumber is high.
目錄
致謝 I
摘要 III
Abstract V
圖目錄 IX
表目錄 XIII
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
第2章 基本理論 3
2.1 銲接基本理論 3
2.2 塑性力學基本理論 4
2.2.1 von Mises降伏準則 8
2.2.2 應變硬化定義 10
2.3 有限元素法基本理論 12
2.3.1 有限元素法應用於熱固耦合問題 13
2.3.2 熱源模形 17
2.3.3 有限元素法應用於挫曲強度分析 21
第3章 研究方法 23
3.1 平板有限元素法銲接模擬 23
3.1.1 有限元素模型及材料參數 23
3.1.2 銲接方向殘餘應力比較 27
3.1.3 其餘方向殘餘應力 30
3.2 圓筒殼有限元素法銲接模擬 33
3.2.1 有限元素模型及材料參數 34
3.2.2 銲後比較 35
3.2.3 銲後變形與殘餘應力分佈曲線擬合 39
3.3 有限元素法挫曲強度分析 42
3.3.1 銲後變形影響 44
3.3.2 銲後殘餘應力影響 49
第4章 數值算例 55
4.1 環向銲接接合長圓筒殼 57
4.1.1 銲接溫度對銲後變形與殘餘應力影響 57
4.1.2 銲接溫度對銲後挫曲強度影響 73
4.2 環向銲接加強材長圓筒殼 74
4.2.1 環向銲接加強材長圓筒殼挫曲強度分析 78
4.2.2 銲後變形與殘餘應力分佈曲線擬合 80
4.2.3 銲接溫度對銲後變形與殘餘應力影響 83
4.2.4 銲接溫度對銲後挫曲強度影響 104
第5章 結論 107
參考資料 109
1. Timoshenko, S. P., & Gere, J. M. (2009). Theory of elastic stability. Courier Corporation.
2. Wang, J., Zhao, H., Zou, J., Zhou, H., Wu, Z., & Du, S. (2017). Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig. Ocean Engineering, 130, 25-39.
3. Bathe, K. J. (2006). Finite element procedures. Klaus-Jurgen Bathe.
4. Moon, C. J., Kim, I. H., Choi, B. H., Kweon, J. H., & Choi, J. H. (2010). Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications. Composite Structures, 92(9), 2241-2251.
5. Ehrhardt, D. A., & Virgin, L. N. (2019). Experiments on the thermal post-buckling of panels, including localized heating. Journal of Sound and Vibration, 439, 300-309.
6. Deng, D. (2009). FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Materials & Design, 30(2), 359-366.
7. Teng, T. L., & Lin, C. C. (1998). Effect of welding conditions on residual stresses due to butt welds. International Journal of Pressure Vessels and Piping, 75(12), 857-864.
8. Chang, P. H., & Teng, T. L. (2004). Numerical and experimental investigations on the residual stresses of the butt-welded joints. Computational Materials Science, 29(4), 511-522.
9. Teng, T. L., Chang, P. H., & Tseng, W. C. (2003). Effect of welding sequences on residual stresses. Computers & structures, 81(5), 273-286.
10. Friedman, E. (1975). Thermomechanical analysis of the welding process using the finite element method. Journal of Pressure Vessel Technology, 97(3), 206-213.
11. Ramkumar, E., & Mayuram, M. M. (2012). Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes. Coupled systems mechanics, 1(2), 165-182.
12. Zhu, H. (1996). Coupled thermo-mechanical finite-element model with application to initial solidification (Doctoral dissertation, Doctoral dissertation, Ph. D. thesis, The University of Illinois at Urbana-Champaign).
13. Ghosh, S., & Moorthy, S. (1993). An arbitrary Lagrangian-Eulerian finite element model for heat transfer analysis of solidification processes. Numerical Heat Transfer, 23(3), 327-350.
14. Brickstad, B., & Josefson, B. L. (1998). A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. International Journal of Pressure Vessels and Piping, 75(1), 11-25.
15. Cho, J. R., Lee, B. Y., Moon, Y. H., & Van Tyne, C. J. (2004). Investigation of residual stress and post weld heat treatment of multi-pass welds by finite element method and experiments. Journal of materials processing technology, 155, 1690-1695.
16. Dong, P. (2001). Residual stress analyses of a multi-pass girth weld: 3-D special shell versus axisymmetric models. Journal of Pressure Vessel Technology, 123(2), 207-213.
17. Dong, P., & Brust, F. W. (2000). Welding residual stresses and effects on fracture in pressure vessel and piping components: a millennium review and beyond. Journal of Pressure Vessel Technology, 122(3), 329-338.
18. Fricke, S., Keim, E., & Schmidt, J. (2001). Numerical weld modeling—a method for calculating weld-induced residual stresses. Nuclear Engineering and Design, 206(2-3), 139-150.
19. Hu, G., Morovat, M. A., Lee, J., Schell, E., & Engelhardt, M. D. (2009, September). Elevated temperature properties of ASTM A992 steel. In 2009 Structures Congress-Don't Mess with Structural Engineers: Expanding Our Role (pp. 1067-1076).
20. Lundbäck, A., & Runnemalm, H. (2005). Validation of three-dimensional finite element model for electron beam welding of Inconel 718. Science and Technology of Welding and Joining, 10(6), 717-724.
21. Gery, D., Long, H., & Maropoulos, P. (2005). Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. Journal of materials processing technology, 167(2-3), 393-401.
22. Deng, D., & Murakawa, H. (2006). Prediction of welding residual stress in multi-pass butt-welded modified 9Cr–1Mo steel pipe considering phase transformation effects. Computational Materials Science, 37(3), 209-219.
23. Deng, D., & Murakawa, H. (2008). Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2.25 Cr–1Mo steel pipes. Computational materials science, 43(4), 681-695.
24. Vaidyanathan, S., Todaro, A. F., & Finnie, I. (1973). Residual stresses due to circumferential welds. Journal of Engineering Materials and Technology, 95(4), 233-237.
25. Deng, D., Murakawa, H., & Liang, W. (2007). Numerical simulation of welding distortion in large structures. Computer methods in applied mechanics and engineering, 196(45-48), 4613-4627.
26. Arbocz, J., & Babcock, C. D. (1969). The effect of general imperfections on the buckling of cylindrical shells. Journal of Applied Mechanics, 36(1), 28-38.
27. Arbocz, J., Babcock Jr, C. D., & Singer, J. (1971). Buckling of imperfect stiffened cylindrical shells under axial compression. AIAA Journal, 9(1), 68-75.
28. Rotter, J. M., & Zhang, Q. (1990). Elastic buckling of imperfect cylinders containing granular solids. Journal of Structural Engineering, 116(8), 2253-2271.
29. Guggenberger, W. (1995). Buckling and postbuckling of imperfect cylindrical shells under external pressure. Thin-walled structures, 23(1-4), 351-366.
30. Gusic, G., Combescure, A., & Jullien, J. F. (2000). The influence of circumferential thickness variations on the buckling of cylindrical shells under external pressure. Computers & Structures, 74(4), 461-477.
31. Combescure, A., & Gusic, G. (2001). Nonlinear buckling of cylinders under external pressure with nonaxisymmetric thickness imperfections using the COMI axisymmetric shell element. International Journal of Solids and Structures, 38(34-35), 6207-6226.
32. Schenk, C. A., & Schuëller, G. I. (2003). Buckling analysis of cylindrical shells with random geometric imperfections. International Journal of Non-Linear Mechanics, 38(7), 1119-1132.
33. Tsouvalis, N. G., Zafeiratou, A. A., & Papazoglou, V. J. (2003). The effect of geometric imperfections on the buckling behaviour of composite laminated cylinders under external hydrostatic pressure. Composites Part B: Engineering, 34(3), 217-226.
34. Teng, J. G., & Lin, X. (2005). Fabrication of small models of large cylinders with extensive welding for buckling experiments. Thin-walled structures, 43(7), 1091-1114.
35. Aghajari, S., Abedi, K., & Showkati, H. (2006). Buckling and post-buckling behavior of thin-walled cylindrical steel shells with varying thickness subjected to uniform external pressure. Thin-walled structures, 44(8), 904-909.
36. Prabu, B., Rathinam, N., Srinivasan, R., & Naarayen, K. A. S. (2009). Finite element analysis of buckling of thin cylindrical shell subjected to uniform external pressure.
37. Fajuyitan, O. K., & Sadowski, A. J. (2018). Imperfection sensitivity in cylindrical shells under uniform bending. Advances in Structural Engineering, 21(16), 2433-2453.
38. Rastgar, M., & Showkati, H. (2018). Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection. Journal of Constructional Steel Research, 145, 289-299.
39. Yu, C. L., Chen, Z. P., Wang, J., Yan, S. J., & Yang, L. C. (2012). Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells. Journal of Zhejiang University SCIENCE A, 13(2), 79-90.
40. Fujikubo, M., & Yao, T. (1999). Elastic local buckling strength of stiffened plate considering plate/stiffener interaction and welding residual stress. Marine Structures, 12(9-10), 543-564.
41. Deng, D., Zhou, Y., Bi, T., & Liu, X. (2013). Experimental and numerical investigations of welding distortion induced by CO2 gas arc welding in thin-plate bead-on joints. Materials & Design, 52, 720-729
42. Taylor, G. I. (1934). The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 145(855), 362-387.
43. Tresca, H. (1864). Memoir on the flow of solid bodies under strong pressure. Comptes-rendus de l’académie des sciences, 59, 754-758.
44. Mises, R. V. (1913). Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913, 582-592.
45. Carter, J. P., & Booker, J. R. (1989). Finite element analysis of coupled thermoelasticity. Computers & Structures, 31(1), 73-80.
46. Hughes, T. J. (2012). The finite element method: linear static and dynamic finite element analysis. Courier Corporation.
47. Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical transactions B, 15(2), 299-305.
48. 陳淯鈴、關百宸。(2015)。船殼鋼板熱加工非線性變形行為分析。國立臺灣海洋大學系統工程暨造船學系碩士學位論文。
49. Wahab, M. A., & Painter, M. J. (1997). Numerical models of gas metal arc welds using experimentally determined weld pool shapes as the representation of the welding heat source. International journal of pressure vessels and piping, 73(2), 153-159.
50. Deng, D., & Murakawa, H. (2006). Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational materials science, 37(3), 269-277.
51. Deng, D., Murakawa, H., & Liang, W. (2007). Numerical simulation of welding distortion in large structures. Computer methods in applied mechanics and engineering, 196(45-48), 4613-4627.
52. Deng, D., Murakawa, H., & Liang, W. (2008). Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe. Computational Materials Science, 42(2), 234-244.
53. Hübner, A., Teng, J. G., & Saal, H. (2006). Buckling behaviour of large steel cylinders with patterned welds. International Journal of Pressure Vessels and Piping, 83(1), 13-26.
54. Vaidyanathan, S., Todaro, A. F., & Finnie, I. (1973). Residual stresses due to circumferential welds. Journal of Engineering Materials and Technology, 95(4), 233-237.
55. Sun, J., Liu, X., Tong, Y., & Deng, D. (2014). A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Materials & Design, 63, 519-530.
56. Holst, J. M. F., Rotter, J. M., & Calladine, C. R. (2000). Imperfections and buckling in cylindrical shells with consistent residual stresses. Journal of Constructional Steel Research, 54(2), 265-282.
57. Brickstad, B., & Josefson, B. L. (1998). A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. International Journal of Pressure Vessels and Piping, 75(1), 11-25.
58. Fricke, S., Keim, E., & Schmidt, J. (2001). Numerical weld modeling—a method for calculating weld-induced residual stresses. Nuclear Engineering and Design, 206(2-3), 139-150.
59. Nathan, S. R., Balasubramanian, V., Malarvizhi, S., & Rao, A. G. (2015). Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints. Defence Technology, 11(3), 308-317.
60. Aghajari, S., Abedi, K., & Showkati, H. (2006). Buckling and post-buckling behavior of thin-walled cylindrical steel shells with varying thickness subjected to uniform external pressure. Thin-walled structures, 44(8), 904-909.
61. Deng, D., & Murakawa, H. (2008). FEM prediction of buckling distortion induced by welding in thin plate panel structures. Computational Materials Science, 43(4), 591-607.
62. Holst, J. M. F., Rotter, J. M., & Calladine, C. R. (2000). Imperfections and buckling in cylindrical shells with consistent residual stresses. Journal of Constructional Steel Research, 54(2), 265-282.
63. Pircher, M., & Bridge, R. (2001). The influence of circumferential weld-induced imperfections on the buckling of silos and tanks. Journal of constructional steel research, 57(5), 569-580.
64. Rotter, J. M., & Teng, J. G. (1989). Elastic stability of cylindrical shells with weld depressions. Journal of Structural Engineering, 115(5), 1244-1263.
65. Teng, J. G., & Rotter, J. M. (1992). Buckling of pressurized axisymmetrically imperfect cylinders under axial loads. Journal of engineering mechanics, 118(2), 229-247.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top