1. Timoshenko, S. P., & Gere, J. M. (2009). Theory of elastic stability. Courier Corporation.
2. Wang, J., Zhao, H., Zou, J., Zhou, H., Wu, Z., & Du, S. (2017). Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig. Ocean Engineering, 130, 25-39.
3. Bathe, K. J. (2006). Finite element procedures. Klaus-Jurgen Bathe.
4. Moon, C. J., Kim, I. H., Choi, B. H., Kweon, J. H., & Choi, J. H. (2010). Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications. Composite Structures, 92(9), 2241-2251.
5. Ehrhardt, D. A., & Virgin, L. N. (2019). Experiments on the thermal post-buckling of panels, including localized heating. Journal of Sound and Vibration, 439, 300-309.
6. Deng, D. (2009). FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Materials & Design, 30(2), 359-366.
7. Teng, T. L., & Lin, C. C. (1998). Effect of welding conditions on residual stresses due to butt welds. International Journal of Pressure Vessels and Piping, 75(12), 857-864.
8. Chang, P. H., & Teng, T. L. (2004). Numerical and experimental investigations on the residual stresses of the butt-welded joints. Computational Materials Science, 29(4), 511-522.
9. Teng, T. L., Chang, P. H., & Tseng, W. C. (2003). Effect of welding sequences on residual stresses. Computers & structures, 81(5), 273-286.
10. Friedman, E. (1975). Thermomechanical analysis of the welding process using the finite element method. Journal of Pressure Vessel Technology, 97(3), 206-213.
11. Ramkumar, E., & Mayuram, M. M. (2012). Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes. Coupled systems mechanics, 1(2), 165-182.
12. Zhu, H. (1996). Coupled thermo-mechanical finite-element model with application to initial solidification (Doctoral dissertation, Doctoral dissertation, Ph. D. thesis, The University of Illinois at Urbana-Champaign).
13. Ghosh, S., & Moorthy, S. (1993). An arbitrary Lagrangian-Eulerian finite element model for heat transfer analysis of solidification processes. Numerical Heat Transfer, 23(3), 327-350.
14. Brickstad, B., & Josefson, B. L. (1998). A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. International Journal of Pressure Vessels and Piping, 75(1), 11-25.
15. Cho, J. R., Lee, B. Y., Moon, Y. H., & Van Tyne, C. J. (2004). Investigation of residual stress and post weld heat treatment of multi-pass welds by finite element method and experiments. Journal of materials processing technology, 155, 1690-1695.
16. Dong, P. (2001). Residual stress analyses of a multi-pass girth weld: 3-D special shell versus axisymmetric models. Journal of Pressure Vessel Technology, 123(2), 207-213.
17. Dong, P., & Brust, F. W. (2000). Welding residual stresses and effects on fracture in pressure vessel and piping components: a millennium review and beyond. Journal of Pressure Vessel Technology, 122(3), 329-338.
18. Fricke, S., Keim, E., & Schmidt, J. (2001). Numerical weld modeling—a method for calculating weld-induced residual stresses. Nuclear Engineering and Design, 206(2-3), 139-150.
19. Hu, G., Morovat, M. A., Lee, J., Schell, E., & Engelhardt, M. D. (2009, September). Elevated temperature properties of ASTM A992 steel. In 2009 Structures Congress-Don't Mess with Structural Engineers: Expanding Our Role (pp. 1067-1076).
20. Lundbäck, A., & Runnemalm, H. (2005). Validation of three-dimensional finite element model for electron beam welding of Inconel 718. Science and Technology of Welding and Joining, 10(6), 717-724.
21. Gery, D., Long, H., & Maropoulos, P. (2005). Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. Journal of materials processing technology, 167(2-3), 393-401.
22. Deng, D., & Murakawa, H. (2006). Prediction of welding residual stress in multi-pass butt-welded modified 9Cr–1Mo steel pipe considering phase transformation effects. Computational Materials Science, 37(3), 209-219.
23. Deng, D., & Murakawa, H. (2008). Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2.25 Cr–1Mo steel pipes. Computational materials science, 43(4), 681-695.
24. Vaidyanathan, S., Todaro, A. F., & Finnie, I. (1973). Residual stresses due to circumferential welds. Journal of Engineering Materials and Technology, 95(4), 233-237.
25. Deng, D., Murakawa, H., & Liang, W. (2007). Numerical simulation of welding distortion in large structures. Computer methods in applied mechanics and engineering, 196(45-48), 4613-4627.
26. Arbocz, J., & Babcock, C. D. (1969). The effect of general imperfections on the buckling of cylindrical shells. Journal of Applied Mechanics, 36(1), 28-38.
27. Arbocz, J., Babcock Jr, C. D., & Singer, J. (1971). Buckling of imperfect stiffened cylindrical shells under axial compression. AIAA Journal, 9(1), 68-75.
28. Rotter, J. M., & Zhang, Q. (1990). Elastic buckling of imperfect cylinders containing granular solids. Journal of Structural Engineering, 116(8), 2253-2271.
29. Guggenberger, W. (1995). Buckling and postbuckling of imperfect cylindrical shells under external pressure. Thin-walled structures, 23(1-4), 351-366.
30. Gusic, G., Combescure, A., & Jullien, J. F. (2000). The influence of circumferential thickness variations on the buckling of cylindrical shells under external pressure. Computers & Structures, 74(4), 461-477.
31. Combescure, A., & Gusic, G. (2001). Nonlinear buckling of cylinders under external pressure with nonaxisymmetric thickness imperfections using the COMI axisymmetric shell element. International Journal of Solids and Structures, 38(34-35), 6207-6226.
32. Schenk, C. A., & Schuëller, G. I. (2003). Buckling analysis of cylindrical shells with random geometric imperfections. International Journal of Non-Linear Mechanics, 38(7), 1119-1132.
33. Tsouvalis, N. G., Zafeiratou, A. A., & Papazoglou, V. J. (2003). The effect of geometric imperfections on the buckling behaviour of composite laminated cylinders under external hydrostatic pressure. Composites Part B: Engineering, 34(3), 217-226.
34. Teng, J. G., & Lin, X. (2005). Fabrication of small models of large cylinders with extensive welding for buckling experiments. Thin-walled structures, 43(7), 1091-1114.
35. Aghajari, S., Abedi, K., & Showkati, H. (2006). Buckling and post-buckling behavior of thin-walled cylindrical steel shells with varying thickness subjected to uniform external pressure. Thin-walled structures, 44(8), 904-909.
36. Prabu, B., Rathinam, N., Srinivasan, R., & Naarayen, K. A. S. (2009). Finite element analysis of buckling of thin cylindrical shell subjected to uniform external pressure.
37. Fajuyitan, O. K., & Sadowski, A. J. (2018). Imperfection sensitivity in cylindrical shells under uniform bending. Advances in Structural Engineering, 21(16), 2433-2453.
38. Rastgar, M., & Showkati, H. (2018). Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection. Journal of Constructional Steel Research, 145, 289-299.
39. Yu, C. L., Chen, Z. P., Wang, J., Yan, S. J., & Yang, L. C. (2012). Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells. Journal of Zhejiang University SCIENCE A, 13(2), 79-90.
40. Fujikubo, M., & Yao, T. (1999). Elastic local buckling strength of stiffened plate considering plate/stiffener interaction and welding residual stress. Marine Structures, 12(9-10), 543-564.
41. Deng, D., Zhou, Y., Bi, T., & Liu, X. (2013). Experimental and numerical investigations of welding distortion induced by CO2 gas arc welding in thin-plate bead-on joints. Materials & Design, 52, 720-729
42. Taylor, G. I. (1934). The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 145(855), 362-387.
43. Tresca, H. (1864). Memoir on the flow of solid bodies under strong pressure. Comptes-rendus de l’académie des sciences, 59, 754-758.
44. Mises, R. V. (1913). Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913, 582-592.
45. Carter, J. P., & Booker, J. R. (1989). Finite element analysis of coupled thermoelasticity. Computers & Structures, 31(1), 73-80.
46. Hughes, T. J. (2012). The finite element method: linear static and dynamic finite element analysis. Courier Corporation.
47. Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical transactions B, 15(2), 299-305.
48. 陳淯鈴、關百宸。(2015)。船殼鋼板熱加工非線性變形行為分析。國立臺灣海洋大學系統工程暨造船學系碩士學位論文。49. Wahab, M. A., & Painter, M. J. (1997). Numerical models of gas metal arc welds using experimentally determined weld pool shapes as the representation of the welding heat source. International journal of pressure vessels and piping, 73(2), 153-159.
50. Deng, D., & Murakawa, H. (2006). Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational materials science, 37(3), 269-277.
51. Deng, D., Murakawa, H., & Liang, W. (2007). Numerical simulation of welding distortion in large structures. Computer methods in applied mechanics and engineering, 196(45-48), 4613-4627.
52. Deng, D., Murakawa, H., & Liang, W. (2008). Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe. Computational Materials Science, 42(2), 234-244.
53. Hübner, A., Teng, J. G., & Saal, H. (2006). Buckling behaviour of large steel cylinders with patterned welds. International Journal of Pressure Vessels and Piping, 83(1), 13-26.
54. Vaidyanathan, S., Todaro, A. F., & Finnie, I. (1973). Residual stresses due to circumferential welds. Journal of Engineering Materials and Technology, 95(4), 233-237.
55. Sun, J., Liu, X., Tong, Y., & Deng, D. (2014). A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Materials & Design, 63, 519-530.
56. Holst, J. M. F., Rotter, J. M., & Calladine, C. R. (2000). Imperfections and buckling in cylindrical shells with consistent residual stresses. Journal of Constructional Steel Research, 54(2), 265-282.
57. Brickstad, B., & Josefson, B. L. (1998). A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. International Journal of Pressure Vessels and Piping, 75(1), 11-25.
58. Fricke, S., Keim, E., & Schmidt, J. (2001). Numerical weld modeling—a method for calculating weld-induced residual stresses. Nuclear Engineering and Design, 206(2-3), 139-150.
59. Nathan, S. R., Balasubramanian, V., Malarvizhi, S., & Rao, A. G. (2015). Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints. Defence Technology, 11(3), 308-317.
60. Aghajari, S., Abedi, K., & Showkati, H. (2006). Buckling and post-buckling behavior of thin-walled cylindrical steel shells with varying thickness subjected to uniform external pressure. Thin-walled structures, 44(8), 904-909.
61. Deng, D., & Murakawa, H. (2008). FEM prediction of buckling distortion induced by welding in thin plate panel structures. Computational Materials Science, 43(4), 591-607.
62. Holst, J. M. F., Rotter, J. M., & Calladine, C. R. (2000). Imperfections and buckling in cylindrical shells with consistent residual stresses. Journal of Constructional Steel Research, 54(2), 265-282.
63. Pircher, M., & Bridge, R. (2001). The influence of circumferential weld-induced imperfections on the buckling of silos and tanks. Journal of constructional steel research, 57(5), 569-580.
64. Rotter, J. M., & Teng, J. G. (1989). Elastic stability of cylindrical shells with weld depressions. Journal of Structural Engineering, 115(5), 1244-1263.
65. Teng, J. G., & Rotter, J. M. (1992). Buckling of pressurized axisymmetrically imperfect cylinders under axial loads. Journal of engineering mechanics, 118(2), 229-247.