跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊瑞福
研究生(外文):Jui-Fu Yang
論文名稱:真空後硒化法製備銅(銦,鎵)硒及銅鋅錫硒薄膜型太陽能電池
論文名稱(外文):Performance of Cu(In,Ga)Se4 and Cu2ZnSnSe4 Solar Cells Prepared by Vacuum Techniques with Post Selenization
指導教授:賴芳儀賴芳儀引用關係郭守義郭守義引用關係
指導教授(外文):Fang-I LaiShou-Yi Kuo
口試委員:郭修伯蕭健男陳維鈞
口試委員(外文):Hsiu-Po KuoChien-Nan HsiaoWei-Chun Chen
口試日期:2016-07-07
學位類別:博士
校院名稱:元智大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:147
中文關鍵詞:銅銦鎵硒太陽能電池銅鋅錫硒太陽能電池奈米結構耐候性
外文關鍵詞:CuInSe2 solar cellsCu2ZnSnSe4 solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,皆採用二階段製程方式,分別使用蒸鍍法、濺鍍法製備其CZTSe薄膜前驅物及蒸鍍法製備其Cu(In,Ga)Se薄膜前驅物,並藉改變背電極、前驅物疊層方式、前驅物成分比、硒化參數探討其對吸收層薄膜特性及光電效率方面之影響,在背電極部分:藉由使用SnO2:F、In2O3:Sn及Mo基板製備其CZTSe薄膜,其主要結果為不同基板會影響其鈉及鋅的擴散分佈,進而可能影響其ZnSe的分佈,以及其表面形貌與薄膜內結構皆受其影響。在前驅物疊層方式可知將其CuxSe/ZnxSn1-x疊層方式改為CuxSe/ZnxSn1-x/CuxSe能改善其元素分佈,在前驅物成分比方面,可藉由改變銅之濃度,控制其表面CuSe多寡,而所製備出之CISe及CZTSe在元件短路電流方面,驗證了富銅吸收層有助於載子收集之優勢,而在硒化參數方面可知硒化速度、最高溫度、低溫溫度改變,皆會造成其CZTSe薄膜內之SnSex流失,進而影響其材料特性,而本篇CZTSe吸收層探討之最高轉換效率分別為:使用蒸鍍後硒化法於傳統結構上得到之CZTSe效率為7.18 %,使用濺鍍法搭配CuxSe及ZnxSn1-x靶材後硒化法於傳統結構上得到之CZTSe效率為6.79 %,而在元件均勻性方面,使用濺鍍法製備其在2.5x2.5 cm2面積上誤差值為± 10%,優於使用蒸鍍法製備。此外本篇論文亦於CIGSe及CZTSe太陽能電池表層藉由化學水浴法,製備其奈米微結構,藉由其所形成之漸變折射率能有效降低反射率提高光電轉換效率外,在變角度方面亦有其功效,此外其奈米結構除了有良好之抗反射率,亦有其疏水性特性,在耐候性測試中可得到具有良好之抗水氧特性,能有效的減少其CZTSe薄膜形太陽能電池衰減速率,進而增加其使用壽命。
In this thesis, methods for efficiency boost of Cu2ZnSnSe4 (CZTSe) thin film solar cells and Cu(In,Ga)Se2 (CIGS) thin films solar cells, focusing on both thin film quality improvement of the CZTSe and CIGS absorber layers developed. Two stage process with selenization process have been used to prepare the precursor layers of CZTSe and CIGS thin films. Both evaporation and sputtering methods to prepare the precursor layers of CZTSe thin film, while evaporation method has been used to prepare the precursor layers of CIGS thin film. Different approaches have been investigated to enhance the preferable characteristics of CZTSe and CIGS thin films for photovoltaic devices, including back contact metal layer analysis, precursor stacking layers engineering, precursor layer composition, selenization parameters. The effects of these approaches on the optical and electrical characteristics of the CZTSe and CIGS absorber layers, and the device performance have been studied. The highest efficiencies of CZTSe thin film solar cells prepared by different approaches used in this thesis are as the follows: the CZTSe solar cell with conventional device structure prepared by method of selenization after evaporation shows efficiency of 7.18 %; the CZTSe solar cell with conventional device structure prepared by selenization after sputtering using CuxSe and ZnxSn1-x precursor stacking layers shows efficiency of 6.79 %.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 x
第一章、研究背景 1
1-1太陽能電池簡介 1
1-2太陽能電池原理 4
第二章、文獻回顧 7
2-1 CIGS、CZTSe太陽能電池基本結構簡介 7
2-2 CIGS薄膜特性介紹 21
2-3 CZTSe薄膜特性介紹 30
第三章、試片製備流程與分析儀器 40
3-1 薄膜製備方式 40
3-2 量測分析儀器 42
第四章、結果與討論 48
4-1 銅分量對CISe薄膜太陽能電池光電特性之影響 48
4-2 具次波長結構之CIGS薄膜太陽能電池之光電響應 58
4-3 蒸鍍後硒化法製備CZTSe薄膜太陽能電池 62
4-3-1 銅分量對CZTSe薄膜太陽能電池之元件特性影響 62
4-3-2 硒化溫度對CZTSe薄膜太陽能電池之元件影響 72
4-3-3具次波長結構之CZTSe薄膜太陽能電池之光電特性響應 80
4-4濺鍍後硒化法製備CZTSe薄膜太陽能電池 85
4-4-1 H2Se硒化製備CZTSe薄膜太陽能電池之元件分析 85
4-4-2無毒硒化之升溫速率對CZTSe薄膜太陽能電池之特性影響 94
4-4-3背電極對CZTSe薄膜太陽能電池特性之分析 99
4-4-4低溫退火溫度對其CZTSe之薄膜太陽能電池特性之影響 109
第五章、結論 117
參考文獻 121

圖 目 錄
圖1-1 (a) 目前主要能源來源 (b)再生能源種類 2
圖1-2 (a) 太陽能頻譜 (AM1.5) (b)常見的太陽能吸收層材料 2
圖1-3 太陽能電池成本及效率分佈圖 3
圖1-4 太陽能電池結構與原理示意圖 4
圖1-5 太陽能電池元件照光前後電壓與電流的關係曲線 6
圖2-1 (a)基本薄膜型太陽能電池結構 (b)CIGS元件對光吸收示意圖 9
圖2-2 (a)鉬俯視圖 (b)不同硒化溫度CZTSe剖面圖 (c)TiN阻絕層示意圖 12
圖2-3(a)導帶彎曲圖 (b)常見吸收、緩衝層導帶價帶 (c)CISe元件能隙圖 14
圖2-4(a)大晶粒CIGS與奈米晶粒CIGS之SEM剖面圖(b) 大晶粒CIGS與奈米晶粒CIGS之載子傳導示意圖 15
圖2-5 CIGS漏電流形成模組 17
圖2-6(a)不同入射光通量之IV圖及界面CBO圖 (b)未照光之CIGS元件能隙圖 (c)照光之CIGS元件能隙圖 18
圖2-7(a)照光與未照光之CIGS IV圖(b)照光與未照光之加偏壓CBO變化圖 19
圖2-8(a) 不同入射光通量之IV圖(b)照紅光之加偏壓載子躍升方式 20
圖2-9(a)橋型CIGS元件示意圖(b)CIGS QE圖 20
圖2-10(a)I-III-VI族黃銅礦結構圖(b)CIGS 結構圖 21
圖2-11 (a)CIS相圖(b) CIS成分比與材料特性圖(c) CIS缺陷總類及defect level 23
圖2-12(a)CIGS元件能隙示意圖(b)具漸變結構之CIGS元件能隙示意圖 24
圖2-13 (a)CIGS電鍍法SEM剖面圖及(d)縱深分析 (b)選轉塗佈法製備CIGS之SEM剖面圖及(e)IV效率(c)油墨法製備CIGS之SEM圖及(f)效率分布圖 26
圖2-14(a)單一蒸鍍源製備CIGS之鍍率圖及(d)PL量測圖 (b) 使用含硒蒸鍍源製備CIS之XRD圖及(e)效率圖(c) 使用含硒及金屬蒸鍍源製備CIGS之SEM圖及(f)縱深圖 27
圖2-15(a)常見之三階段共蒸鍍法參數配方及(b)製備其CIGS之SEM剖面圖(c)SEM俯視圖(d)縱深分佈圖 28
圖2-16(a)使用雙合金靶材濺鍍製備其CIGS之縱深圖及(d)效率圖 (b)疊層方式對其CIGS縱深分佈影響圖及(e)二段退火對縱深分佈影響 (c)使用單一CIGS靶材之薄膜XRD圖及(f)縱深分佈 29
圖2-17(a)地表蘊含礦物量圖 (b)各類型太陽能電池成本及產能圖 30
圖2-18(a)CZTS取代CIGS元素示意圖(b)Cu-Zn-Sn-Se四元擬相圖(c)閃鋅礦結構徵圖 31
圖2-19(a)CZTSe之Formation energy (b)CZTSe之缺陷總類及其defect level (c)常見之多元相特性 32
圖2-20(a)電鍍法製備CZTSe之SEM圖及(d)縱深分析圖 (b)旋轉塗佈法製備其CZTSe之縱深圖及(e)效率圖(c)SILAR法製備CZTSe之示意圖及(f)效率圖 34
圖2-21(a)單一CZTSe之粉體XRD圖及(d)其薄膜之SEM圖 (b)使用含硒蒸鍍源製備於不同元素氣氛中成長CZTSe之SEM圖 (c)使用共蒸鍍法製備CZTSe之SEM圖及(e)效率圖 35
圖2-22(a)使用純金屬靶材製備其CZTSe薄膜之XRD圖及(d)縱深圖(b)使用Cu、及Zn60Sn40合金靶材製備CZTS之XRD圖 (c) 使用Cu、Zn及Cu10Sn90合金靶材製備之CZTSe SEM圖及(e)效率圖 36
圖2-23(a)使用含S之前軀物製備其CZTS之SEM圖及(d)效率圖 (b)採用共濺鍍法分別使用純金屬及含硫靶材製備其CZTSe薄膜之SEM圖及(e)效率圖 (c)為使用不同比例單一濺鍍靶材CZTSe之SEM圖及(f)縱深圖 37
圖2-24(a)形成CZTSe/CZTS 漸變結構之能隙示意圖及(b)低銳角量測圖及(c)能隙變化圖 (d)使用全真空法製備無鎘CIGS之 Zn(Sx,O1-x)之均勻性及(e)單一元件最高效率圖及(f)效率分佈圖 39
圖3-1(a)元件基本製作流程(b)具表面奈米結構之元件示意圖 40
圖3-2 (a)濺鍍機示意圖(b)蒸鍍機示意圖(c)硒(硫)化爐 42
圖3-3(a)XRD示意圖(b)XRD設備圖 43
圖3-4(a)SEM示意圖 (b)EDS示意圖 (c)EDS量測圖 43
圖3-5(a)TEM示意圖(b)Mapping量測圖(c)SAED量測圖 44
圖3-6(a)入射光與材料光學關係(b)設備示意圖 (c)量測數據圖 45
圖3-7(a)光激發光原理示意圖(b)量測圖(c)設備示意圖 45
圖3-8(a)拉曼設備圖(b)量測圖(c)Mapping圖 46
圖3-9 (a)設備圖(b)太陽能模擬器示意圖(c)量測圖 47
圖3-10 (a)設備圖(b)量子效應關係量測圖 (c)Mapping圖 47
圖4-1(a)EDS 成分圖 (b) 原子量變化圖 49
圖4-2(a)~(e)依序分別為極富銅、富銅、銅多、貧銅、極貧銅之俯視圖 (f)~(j)為其對應之剖面圖 (k)為其實驗組初步缺陷分類圖 50
圖4-3(a)不同銅濃度之XRD圖 (b)CISe(112)向放大圖 51
圖4-4(a)富銅之XRD高斯擬合圖 (b)銅多之XRS高斯擬合圖 52
圖4-5(a)富銅之XPS 高斯擬合圖 (b)銅多之XPS高斯擬合圖 52
圖4-6(a)不同銅濃度之拉曼量測圖 (b) 170 cm-1放大圖 53
圖4-7(a)10K下之銅多、貧銅PL圖 (b)TRPL圖 54
圖4-8(a) 未照光之不同銅濃度IV圖 (b) 照光之不同銅濃度IV圖 57
圖4-9 本節所製備之表面奈米結構元件示意圖 59
圖4-11(a)不同表面奈米結構之XRD圖(b)垂直入光不同表面奈米結構反射率 60
圖4-12(a)~(c)依序為表面未做結構、奈米柱、奈米樹之變角度反射率圖 (d)為其加權處理後之趨勢圖 61
圖4-13 (a)不同表面奈米結構折射率變化圖(b)不同表面奈米結構IV圖 62
圖4-14 (a)~(e)不同銅濃度之俯視圖 (f)~(j)為其剖面圖 64
圖4-15(a)不同銅濃度之XRD圖 (b)CZTSe(112)向放大圖 65
圖4-16不同銅濃度之(a)拉曼圖(b)195cm-1放大圖(c)OM圖(d)mapping圖 66
圖4-17 不同銅濃度之(a)反射率圖(b)穿透率圖(c)吸收率圖(d)能隙變化圖 67
圖4-18 不同銅濃度之(a)Hall量測變化圖(b)未照光之IV圖 69
圖4-19 為不同銅濃度之(a)照光下之IV圖(b) EQE圖 71
圖4-20 (a)~(d)依序為硒化溫度480、500、520、540℃俯視(e)-(h)對應剖面圖 73
圖4-21 不同硒化溫度之(a)成分變化圖(b)拉曼量測圖 74
圖4-22不同硒化溫度之(a)穿透率圖(b)反射率圖(c)能隙變化圖 (d)原子變化率與能隙關係圖 75
圖4-23 (a)不同硒化溫度之XRD圖 (b)R1、R2變化圖 76
圖4-24不同硒化溫度之(a)Hall量測變化圖(b)未照光之IV圖 77
圖4-25 不同硒化溫度之(a)照光下之IV圖(b)EQE圖 78
圖4-26 本節於元件表面製備之奈米結構示意圖 81
圖4-27 (a)~(e)依序為元件表面上成長 0hr、3hr、6hr、9hr、12hr之剖面圖 (f)~(j)為其對應之俯視圖 81
圖4-28 元件表面成長不同奈米柱時間之(a)XRD圖 (b)反射率圖 82
圖4-29元件表面成長不同奈米柱時間之(a)照光下IV圖 (b)接觸角圖 83
圖4-30 耐候性測試之表面奈米柱(a)對AZO薄膜特性影響(b)對元件特性影響 84
圖4-31 前驅物變化之XRD圖 86
圖4-32 前驅物疊層與硒化後之(a) 拉曼變化圖 (b) PL變化圖 87
圖4-33 合成CZTSe薄膜之(a)俯視圖 (b)剖面圖 (c)TEM圖 (d) SAED圖 88
圖4-34合成CZTSe薄膜之(a)SIMS圖 (b)原子比例變化圖 89
圖4-35 CZTSe元件之(a)不同入射光照下之IV圖 (b)EQE圖 91
圖4-36 CZTSe薄膜之變溫量測(a)未照光之IV圖(b) 照光之IV圖 92
圖4-37 不同硒化速率之(a)~(d)俯視圖 (e)~(h)對應之剖面圖 95
圖4-38 不同硒化速率之(a) XRD圖 (b) 拉曼圖 96
圖4-39 不同硒化速率之(a)10K下之PL圖 (b)未照光之IV圖 97
圖4-40 不同硒化速率之(a) 照光下之IV圖 (b) EQE圖 98
圖4-41 本節不同基板之元件示意圖 100
圖4-42 (a)~(c)依序為成長於Mo、FTO、ITO基板俯視圖(d)~(f)為對應剖面圖 101
圖4-43成長於不同基板之CZTSe薄膜 (a)XRD圖 (b) PL圖 102
圖4-44 依序為CZTSe薄膜成長於 (a) Mo (b) ITO (c) FTO 基板之SIMS圖 103
圖4-45 CZTSe薄膜成長於不同基板上之(a) 鈉分佈圖 (b)鋅分佈圖 104
圖4-46 CZTSe元件製備於不同基板之(a)未照光之IV圖 (b)照光之IV圖 105
圖4-47 (a)CZTSe元件製備於不同基板之EQE圖(b)耐候性量測 107
圖4-48 本節所使用之(a)前驅物疊層方式改變 (b)低溫退火調整 109
圖4-49 不同低溫退火溫度變化之(a)~(c)俯視圖 (d)~(f) 剖面圖 110
圖4-50不同低溫退火溫度變化之(a)原子量變化圖 (b)拉曼圖 111
圖4-51不同低溫退火溫度變化之(a)XRD圖 (b) (112)向放大圖 111
圖4-52不同低溫退火溫度變化之10K下 (a)之PL (b) TRPL圖 112
圖4-53不同低溫退火溫度變化之(a)鋅訊號分佈圖 (b)原子比例變化圖 113
圖4-54不同低溫退火溫度變化之(a)未照光IV圖 (b)照光IV圖 (c)EQE圖 114


表 目 錄
表一 不同銅濃度元件特性 57
表二 不同銅濃度之元件未照光特性 70
表三 不同銅濃度之元件照光特性 71
表四 不同硒化溫度之元件未照光特性 78
表五 不同硒化溫度之元件照光下特性 79
表六 元件表面成長不同奈米柱時間之元件特性 83
表七 未照光下之元件變溫特性 93
表八 照光下之元件變溫特性 93
表九 不同硒化速率之薄膜原子量 95
表十 不同硒化速率之元件特性 98
表十一 CZTSe元件製備於不同基板之元件特性 106
表十二 不同硒化低溫段溫度變化之元件特性 115


[1] http://ppt.cc/QHcX7
[2] http://pansci.asia/archives/59997
[3] Zhiming Wu, Weiping Wang, Yiyan Cao, Jialun He, Qiang Luo, Waseem Ahmed Bhutto, Shuping Lia, Junyong Kang. ”A beyond near-infrared response in a wide-bandgap ZnO/ZnSe coaxial nanowire solar cell by pseudomorphic layers”, J. Mater. Chem. A; 2, pp. 14571–14576, (2014).
[4] http://www.beamsolar.com/en/productshow.asp?ArticleID=X2V7U01ZZX
[5] 李明俊, “蒸鍍成長硒化銅銦薄膜太陽能電池特性表現之研究”,長庚大學光電工程研究所,(2014)。
[6] K. Orgassa, H.W. Schock, J.H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells”, Thin Solid Films; 431–432, pp.387–391, (2003).
[7] S. Agilan, D. Mangalaraj, “Structure and temperature dependence of conduction mechanisms in hot wall deposited CuInS2 thin films and effect of back contact layer in CuInSe2 based solar cells”, Vacuum; 84, pp. 1220-1225,(2010).
[8] Ingrid Repins, Carolyn Beall, Nirav Vora, Clay DeHart, Darius Kuciauskas, Pat Dippo, Bobby To, Jonathan Mann, Wan-Ching Hsu, Alan Goodrich, Rommel Noufi, ”Co-evaporated Cu2ZnSnSe4 films and devices”, Solar Energy Materials and Solar Cells; 101: pp. 154-159, (2012).
[9] 莊宗曄, “濺鍍銅銦鎵硒薄膜之硒處理研究” , 國立高雄大學電機工程所, (2009)。
[10] 簡崇堯, ”以元素疊層摻入Sb之硒化法製備CIGS薄膜之研究” ,國立中山大學材料與光電科學學系, (2012) 。
[11] K. Reiner, S. Alexander, R. Thorsten, G. Dieter, Christian A. Kaufmann, U. Thomas, Martha Ch. Lux-Steiner, “Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%”, Prog. Photovolt: Res. Appl.; 22, pp.161-165 (2014)
[12] Z. Zhang, C. Bao, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method”, Superlattices and Microstructures; 49, pp. 644-653, (2011).
[13] C. Adrian, B. Stephan, P. Fabian, B. Patrick, G. Christina, R. Uhl Alexander, F. Carolin, K. Lukas, P. Julian, S. Sieghard, V. Rajneesh, N. Shiro, Yaroslav E. Romanyuk, B. Gerhard, Ayodhya N. Tiwari, “Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films”, NATURE MATERIALS; 10, pp.857-861, (2011)
[14] 黃永昱, “以非真空製程成長 Na2Se 摻雜之銅銦鎵硒Cu(InGa)Se2薄膜”, 國立虎尾科技大學材料科學與綠色能源工程研究所, (2014)。
[15] 黃哲瑄, “以濺鍍/無毒硒化製程製作銅銦鎵硒薄膜太陽能電池” ,國立交通大學照明與能源光電研究所 (2011)。
[16] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%”, Phys. Status Solidi RRL; 9, pp. 28-31, (2015).
[17] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi,”Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency”, Advanced Energy Materials; 4: pp. 1301465, (2014).
[18] D.H. Cho, Y.D. Chung, K.H. Kim,” Effect of NaF Precursor on Preferential Growth of Cu(In,Ga)Se2 Thin Films”, Journal of the Korean Physical Society; 60, No. 10, pp. 1517-1520, (2012).
[19] K. Umemoto, I. Shiono, H.e Chiba, Y. Kondo, S. Zhang, “Evaluation of the CIGS precursor layer deposited by CuGa-NaF sputtering target and its effect for Na distribution”, Photovoltaic Specialist Conference (PVSC), IEEE 42nd, DOI: 10.1109/PVSC.2015.7356359, (2015).
[20] 林志成,呂奇名,邱秋燕, ”CIGS用軟性塑膠基板材料技術”, 工業材料雜誌;295期,(2011)。
[21] K. Orgassa, H.W. Schock, J.H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells”, Thin Solid Films; 431-432, pp.387-391, (2003).
[22] J.H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, “Sputtered molybdenum bilayer back contact for copper indium diselenide-bsed polycrystalline thin-film solar cells”, Thin Solid Films; 260, pp.26-31, (1994).
[23] W. Li, X. Yan, A.G. Aberlea, S. Venkataraj, “Analysis of microstructure and surface morphology of sputter deposited molybdenum back contacts for CIGS solar cells”, Procedia Engineering ;139, pp.1-6, (2016).
[24] J.H. Yoon, W.M. Kim, J.K. Park, Y.J. Baik, T.Y. Seong, J.h Jeong, “Control of the preferred orientations of Cu(In,Ga)Se2 films and the photovoltaic conversion efficiency using a surface-functionalized molybdenum back contact”, Prog. Photovolt: Res. Appl.; 22, pp. 69-76, (2014).
[25] M. Jubault, , L. Ribeaucourt, E. Chassaing, G. Renou, D. Lincot, F. Donsanti, ”Optimization of molybdenum thin films for electrodeposited CIGS solar cells”, Solar Energy Materials & Solar Cells; 95, pp. S26–S31, (2011).
[26] B.Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guh, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier”, APPLIED PHYSICS LETTERS ; 101, 053903. (2012).
[27] D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F.V. Kurdesau, A.N. Tiwari, “Formation and characterization of MoSe2 for Cu(In,Ga)Se2 based solar cells”, Thin Solid Films; 480-481, pp. 433-438, (2005).
[28] S. Ahn, K.H. Kim, J.H. Yun, K.H. Yoon, “Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles”, J. Appl. Phys.; 105, 113533, (2009).
[29] J.J. Scragg, T. Kubart, J.T. Wätjen, T. Ericson, M.K. Linnarsson, C. Platzer-Björkman, ”Effects of Back Contact Instability on Cu2ZnSnS4 Devices and Processes”, Chem. Mater.; 25, 3162 -3171, (2013).
[30] M. Theelen, M. Tomassini, N. Barreau, H.Steijvers, A. Branca, S. Harel, Z. Vroon, M. Zeman, ”The impact of selenisation on damp heat degradation of the CIGS back contact molybdenum”, Photovoltaic Specialists Conference (PVSC); Volume 2, IEEE 38th, 3-8, pp.1-6.DOI: 10.1109/PVSC-Vol2.2012.6656703, 2012.
[31] S. H. Moon, S. J. Park, Y. J. Hwang, D.K. Lee, Y. Cho, D.W Kim, B.K. Min, ”Printable Wide Band-gap Chalcopyrite Thin Films for Power Generating Window Applications“, Sci. Rep.; 4. DOI:10.1038/srep04408, (2014).
[32] J. Ge, J. Chu, J. Jiang, Y. Yan, P. Yang, ”Characteristics of In-Substituted CZTS Thin Film and Bifacial Solar Cell”, ACS Appl. Mater. Interfaces; 6, pp. 21118 -21130, (2014).
[33] G. Zoppi, I. Forbes, R.W. Miles, P.J. Dale, J.J. Scragg, L.M. Peter, ”Cu2ZnSnSe4 Thin Film Solar Cells Produced by Selenisation of Magnetron Sputtered Precursors”, Prog. Photovolt: Res. Appl.; 17, pp. 315–319, (2009).
[34] S.U. Park, R. Sharma, K. Ashok, S. Kang, J.K. Sim, C.R. Lee, ”A study on composition, structure and optical properties of copper-poor CIGS thin film deposited by sequential sputtering of CuGa/In and In/(CuGa/In) precursors”, Journal of Crystal Growth; 359, pp. 1–10, (2012).
[35] T.P. Hsieh, C.C. Chuang, C.S. Wu, J.C. Chang, J.W. Guo, W.C. Chen, ”Effects of residual copper selenide on CuInGaSe2 solar cells”, Solid-State Electronics; 56, pp. 175–178, (2011).
[36] H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, ”Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked metallic layers”, Thin Solid Films; 517, pp. 1457-1460, (2008).
[37] H. Katagiri, “Cu2ZnSnS4 thin film solar cells”, Thin Solid Films; 480–481, pp. 426-432, (2005).
[38] O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, E. Mellikov, ”Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route”, Thin Solid Films; 535, pp. 48-51, (2013).
[39] G. Choudhary and H. Hansen, ”Human health perspective on environmental exposure to hydrazines: a review”, Chemosphere; 37, No.5, pp. 801–843, (1998).
[40] F. J. C. Roe, G. A. Grant and D. M. Millican, “Carcinogenicity of Hydrazine and 1,1-Dimethylhydrazine for Mouse Lung”, Nature; 216, pp. 375-376 (1967).
[41] T.T. Wu, J.H. Huang, F. Hu, C.K. Chang, W.L. Liu, T.H. Wang, C.H. Shen, J.M. Shieh, Y.L. Chueh, ”Toward high efficiency and panel size 30x40 cm2 Cu(In,Ga)Se2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature”, Nano Energy; 10, pp. 28–36, (2014).
[42] C.Y. Su, W.H. Ho, H.C. Lin, C.Y. Nieh, S.Ch. Liang, ”The effects of the morphology on the CIGS thin films prepared by CuInGa single precursor”, Solar Energy Materials & Solar Cells; 95, pp. 261-263, (2010).
[43] T.P. Hsieh, C.C. Chuang, C.S. Wu, J.C. Chang, J.W. Guo, W.C. Chen, ”Effects of residual copper selenide on CuInGaSe2 solar cells”, Solid-State Electronics ; 56, pp. 175-178, (2011).
[44] C.H. Huang, D.C. Wen, “The Effects of Annealing Parameters on the Crystallization and Morphology of Cu(In,Ga)Se2 Absorber Layers Prepared by Annealing Stacked Metallic Precursors”, International Journal of Photoenergy; Volume, Article ID 568648, 8 pages http://dx.doi.org/10.1155/2014/568648 (2014).
[45] L. Zhang, Q. He, W.L. Jiang, F.F. Liu, C.J. Li, Y. Sun, "Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films", Solar Energy Materials & Solar Cells; 93, pp. 114-118, (2009).
[46] K.H. Liao, C.Y. Su, Y.T. Ding, H.S. Koo, ”Microstructural characterization of CIGS formation using different selenization processes”, Applied Surface Science ;270, 139-144, (2013).
[47] M. Oh, W.K. Kim, ”Sn compensation via SnSex binary vapor supply during Cu2ZnSnSe4 formation”, Journal of Alloys and Compounds; 616, pp. 436-441, (2014).
[48] S. OH, N.H. KIM, ”CIGS THIN FILMS SPUTTERED BY USING CHALCOGENIDE CuSe2 WITH MULTILAYER-STACK-STRUCTURE AND RAPID THERMAL ANNEALING”, Chalcogenide Letters; 11(2), pp. 71-77, (2014).
[49] R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H.W. Schock, B. Dimmler, ”Prospects of wide-gap chalcopyrites for thin film photovoltaic modules”, Solar Energy Malerials and Solar Cells; 49, pp. 227-237, (1997).
[50] M. Murata, J. Chantana, N. Ashida, D. Hironiwa, T. Minemoto, “Influence of conduction band minimum difference between transparent conductive oxide and absorber on photovoltaic performance of thin-film solar cell”, Japanese Journal of Applied Physics; 54, pp 32301, (2015).
[51] D. Schmid, M. Ruckh, H.W. Schock, ”A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures “, Solar Energy Materials and Solar Cells; 41-42, pp. 281-294, (1996).
[52] B. Lei, W.W. Hou, S.H. Li, W. Yang, C.H. Chung, Y. Yang, ”Cadmium ion soaking treatment for solution processed CuInSxSe2-x solar cells and its effect on defect properties”, Solar Energy Mater. Solar cells;, 95(8), pp. 2384-2389, (2011).
[53] N. T, “Nano-structural investigations on Cd-doping into Cu(In, Ga)Se2 thin films by chemical bath deposition process”, Thin Solid Films; 361-362, pp. 346-352, (2000).
[54] C.S. Jiang, F.S. Hasoon, H.R. Moutinho, H.A. Al-Thani, M.J. Romero, M.M. Al-Jassim, ”Direct evidence of a buried homojunction in Cu(In, Ga)Se2 solar cells”, Appl. Phys. Lett.; 82(1), pp. 127, (2003).
[55] S.Y. Park, E.W. Lee, S.H. Lee, S.W. Park, W.K. Kim, S.H. Lee, W.G. Lee, B.J. Lee, H.K. Bae, J.H. Yoo, C.W. Jeon, ”Investigation of ZnO/ CdS/CuInxGa1-xSe2 interface reaction by using hot-stage TEM”, Current Appl. Phys.; 10(3), pp. S399-S401, (2010).
[56] S.N. Park, S.J. Sung, J.H. Sim, K.J. Yang, D.K. Hwang, J.H. Kim, G.Y. Kim, W. Jo, D.H. Kim, J.K. Kang, ”Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p–n junction solar cells”, Nanoscale; 7, pp. 11182-11189 (2015).
[57] A. Kudo, Y. Miseki, ”Heterogeneous photocatalyst materials for water splitting”, Chem Soc Rev; 38, pp. 253-278, (2009).
[58] A. Okamoto, T. Minemoto, H. Takakura , “Application of Sputtered ZnO1-xSx Buffer Layers for Cu(In,Ga)Se2 Solar Cells”, Japanese Journal of Applied Physics; 50, pp. 04DP10, (2011).
[59] U. Zimmermann, M. Ruth, M. Edoff, “CADMIUM-FREE CIGS MINI-MODULES WITH ALD-GROWN Zn(O, S)-BASED BUFFER LAYERS”, 21st European Photovoltaic Solar Energy Conference,4-8 September (2006).
[60] M. Nakamura, Y. Kouji, Y. Chiba, H. Hakuma, T. Kobayashi, T. Nakada, ”Achievement of 19.7% efficiency with a small-sized Cu(InGa)(SeS)2 ,solar cells prepared by sulfurization after selenizaion process with Zn-based buffer”, Proceedings of the 39th IEEE Photovoltaic Specialists Conference, Tampa, (2013).
[61] J. Kim, C. Park, S.M. Pawar, A.I. Inamdar, Y. Jo, J. Han, J.P. Hong, Y.S. Park, D. Y. Kim, W. Jung, H. Kim, H. Im, “Optimization of sputtered ZnS buffer for Cu2ZnSnS4 thin film solar cells”, Thin Solid Films; 566, pp. 88-92, (2014).
[62] F. J. Pern, S. H. Glick, X. Li, C. DeHart, T. Gennett, M. Contreras, T. Gessert, ”Stability of TCO Window Layers for Thin-Film CIGS Solar Cells upon Damp Heat Exposures – Part III”, Proc. of SPIE; 7412, pp74120K1-12 (2010).
[63] Y. Hagiwara, T. Nakada, A. Kunioka, ”Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer”, Solar Energy Materials & Solar Cells; 67, pp. 267- 271, (2001).
[64] J. Nam, Y. Kang, D. Lee, J.Y. Yang, Y.S. Kim, C.B. Mo, S. Par, Dongseop Kim, “Achievement of 17.9% efficiency in 30×30cm2 Cu(In,Ga)(Se,S)2 solar cell sub-module by sulfurization after selenization with Cd-free buffer”, Prog. Photovolt: Res. Appl.; 24, pp. 175-182, (2016).
[65] S. Osada, Y. Abe, T. Anegawa, T. Minemoto, H. Takakura, "Cu(In,Ga)Se2 solar cells with superstrate structure using lift-off process" Solar Energy Materials & Solar Cells; 95, pp. 223 -226, (2011).
[66] S.J. Oh, N.E. Berry, J.H. Choi, E.A. Gaulding, T. Paik, S.H. Hong, C.B. Murray, C.R. Kagan, “Stoichiometric con-trol of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance”, ACS Nano; 7, pp. 2413-2421, (2013).
[67] S.Y. Kuo, M.Y. Hsieh, H.V. Han, F.I. Lai, Y.L. Tsai, J.F. Yang, T.Y. Chuang, H.C. Kuo, ”Dandelion-shaped nanostructures for enhancing omnidirectional photovoltaic performance”, Nanoscale; 5, pp. 4270-4276, (2013).
[68] J.H. Park, T.I. Lee, S.H. Hwang, K.J. Moon, J.M. Myoung, “Electrically conductive anti-reflecting nanostructure for chalcogenide thin-film solar cells”, Prog. Photovolt: Res. Appl.; 23, pp. 813-820, (2015).
[69] B.L. Williams, S. Smit, B.J. Kniknie, K.J. Bakker, W. Keuning, W. M. M. Kessels, R.E. I. Schropp, M. Creatore, “Identifying parasitic current pathways in CIGS solar cells by modelling dark J–V response”, Prog. Photovolt: Res. Appl.; 23, pp. 1516 – 1525, (2015).
[70] T. Song, “DISTORTIONS TO CURRENT-VOLTAGE CURVES OF CIGS CELLS WITH SPUTTERED Zn(O,S) BUFFER LAYERS”, Degree of Master of Science Colorado State University Fort Collins, Colorado (2013).
[71] M. Nichterwitz, R. Caballero, C.A. Kaufmann, H.W. Schock, T. Unold, “Generation-dependent charge carrier transport in Cu(In,Ga)Se2/CdS/ZnO thin-film solar-cells”, JOURNAL OF APPLIED PHYSICS; 113, pp. 044515 (2013).
[72] M. Köntges, R. Reineke-Koch, P. Nollet, J. Beier, R. Schäffler, J. Parisi, “Light induced changes in the electrical behavior of CdTe and Cu(In,Ga)Se2 solar cells”, Thin Solid Films; 403–404, pp. 280–286, (2002).
[73] C.H. Chung, B. Bob, T.B. Song, Y. Yang,” Current–voltage characteristics of fully solution processed high performance CuIn(S,Se)2 solar cells: Crossover and red kink”, Solar Energy Materials & Solar Cells; 120, pp. 642-646, (2014).
[74] M. Neuschitzer, Y. Sanchez, S. López-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink”, Prog. Photovolt: Res. Appl.; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/pip.2589. (2015).
[75] U. Rau, M. Schmitt, J. Parisi, W. Riedl, F. Karg, “Persistent photoconductivity in Cu(In,Ga)Se2 heterojunctions and thin films prepared by sequential deposition”, Applied Physics Letters; 73, pp. 223; doi: 10.1063/1.121762, (1998).
[76] Y.K. Liao, S.Y. Kuo, M.Y. Hsieh, F.I. Lai, M.H. Kao, S.J. Cheng, D.W. Chiou, T.P. Hsieh, H.C. Kuo, ”A look into the origin of shunt leakage current of Cu(In,Ga)Se2 solar cells via experimental and simulation methods”, Solar Energy Materials & Solar Cells; 117, 145–151, (2013).
[77] http://www.live-strong.com.tw/optoelectronics_2.htm
[78] Y.K. Liao, M. Brossard, D.H. Hsieh, T.N. Lin, M.D. B. Charlton, S.J. Cheng, C.H. Chen, J.L. Shen, L.T. Cheng, T.P. Hsieh, F.I. Lai, S.Y. Kuo, H.C. Kuo, P.G. Savvidis, P.G. Lagoudakis, ”Highly Efficient Flexible Hybrid Nanocrystal-Cu(In,Ga)Se2 (CIGS) Solar Cells”, Adv. Energy Mater.; 5, pp. 1401280, (2015).
[79] F. Tsin, A. Vénérosy, T. Hildebrandt, D. Hariskos. N. Naghavi, D. Lincot, J. Rousset, ”Electrodeposition of ZnO-doped films as window layer for Cd-free CIGS-based solar cells”, Proc. SPIE 9749, Oxide-based Materials and Devices VII, 97491H; doi:10.1117/12.2209327, (2016).
[80] 謝宜勳, 以硒化物疊層硒化法製備CIGS薄膜之研究,國立中山大學材料與光電科學學系碩士論文,(2012)。
[81] T. G¨odecke, T. HAALBOOM, F. ERNST, “Phase equilibria of Cu-In-Se I. Stable states and nonequilibrium state of the In2Se3-Cu2Se subsystem”, Z. Metallkd. 91; 622-634, (2000).
[82] R. Noufi, R. Axton, C. Herrington, S. K. Deb, “Electronic properties versus composition of thin films of CuInSe2”, Appl. Phys. Lett.; 45, pp.688-670 (1984).
[83] L.L. kazmerski, “Photovoltaics:A reviewer of cell and module technologies”, Renewable and sustainable energy review; 1 , pp. 71-171, (1997).
[84] Y. Hamakawa, “Thin-film solar cells : next generation photovoltaics and its applications”, Berlin ; New York, pp. 164~169, Springer, (2004).
[85] 刘壮團隊, 铜铟镓硒太阳能电池的机遇与挑战,中国科学: 化学 2013 年 第 43 卷 第 6 期: 716 ~ 724.
[86] P. Luo, P. Yu, R. Zuo, J. Jin, Y. Xu, Y. Ding, J. Song, "The preparation of Cu(In,Al)S2 films by direct reduction and sulfuration of the oxide precursors", Scripta Materialia; 64, pp. 422-425, (2011).
[87] U. Rau, M. Schmidt, A. Jasenek, G. Hanna, H.W. Schock, “Electrical characterization of Cu(In.Ga)Se2 thin-film solar cells and the role of defects for the device performance”, Solar Energy Materials and Solar cells; 67(1-4), pp. 137~143, (2001).
[88] G.M. Hanket, U.P.S., E. Eser, W. N.ShaFaran, R. W. Birkmire, Photovoltaic Specialists Conference. Proceedings of the 29th IEEE, 567, (2002).
[89] D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phy. Lett.; 31, pp. 292, (1977).
[90] W. Horig, H. Neumann, H. Sobotta, B. Schumann, and G. Kuhn, “The optical properties of CuInSe2 thin films”, Thin Solid Films; 48, pp. 67-72, (1978).
[91] L. L. Kazmerski, M. Hallerdt, P. J. Ireland, R. A. Mickelsen, and W. S. Chen, “Optical properties and grain boundary effects in CuInSe2”, J. Vac. Sci. Technol. A; 1, pp. 395-398, (1983).
[92] S. Zweigart, D. Schmid, John Kessler, Hans-Werner Schock, “Studies of the growth-mechanism of polycrystalline CuInSe2 thin-films prepared by a sequential progress”, J. Cryst. Growth; 146, pp. 233-238, (1995).
[93] R.N. Bhattacharya, “CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers”, Solar Energy Materials & Solar Cells; 113, pp. 96–99, (2013).
[94] R.N. Bhattacharya, W. Batchelor, J.F. Hiltner, J.R. Sites, “Thin-Film CuIn 1-xGaxSe2 photovoltaic cells from solution-based precursor layers”, Applied Physics Letters; 75, pp. 1431-1433, (1999).
[95] T.K. Todorov, O Gunawan, T. Gokmen, D.B. Mitzi, “Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell, Prog. Photovolt: Res. Appl.; 21, pp. 82-87, (2013).
[96] Q.Guo, G.M. Ford, R. Agrawal, H.W. Hillhouse,” Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfidenanocrystal inks”, Prog. Photovolt: Res. Appl.; 21, pp. 64- 71, (2013).
[97] M.I. Hossain,” Fabrication and characterization of CIGS solar cells with In2S3 buffer layer drposited by PVD technique”, Chalcogenide Letters; Vol. 9, No. 5, pp. 185 -191, May (2012).
[98] A. Luque, S. Hegedus, "Handbook of Photovoltaic Science and Engineering, "John Wiley & Sons Ltd, 2003.
[99] C. Xu, H. Zhang, J. Parry, S. Perera, G. Long, H. Zeng, “A single source three-stage evaporation approach to CIGS absorber layer for thin film solar cells”, Solar Energy Materials & Solar Cells; 117, pp. 357-362, (2013).
[100] S. C. Park, D. Y. Lee, B. T. Ahn, K. H. Yoon, J. Song, “Fabrication of CuInSe2 films and solar cells by the sequential evaporation of In2Se3 and Cu2Se binary compounds”, Solar Energy Materials & Solar Cells; 69, pp. 99 -105, (2001).
[101] F.B. Dejene, “The structural and material properties of CuInSe2 and Cu(In,Ga)Se2 prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications”, Solar Energy Materials & Solar Cells; 93, pp. 577–582, (2009).
[102] R. A. Mickelsen and Wen S. Chen, “High photocurrent polycrystalline thin film CdS/CuInSe2 solar cells”, Appl. Phys let; 36(5), 371-373, (1980).
[103] http://www.aist.go.jp/aist_j/new_research/nr20080829/nr20080829.html.
[104] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, "19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor”, Prog. Photovolt: Res. Appl.; 16, pp. 235-239, (2008).
[105] H.S. Lee, N.M. Park, K.S. Lee, J. Kim , H.J. Chang, “Two-step Selenization of Cu-In-Ga Precursors for CIGS Thin-film Solar Cells by Using a Se Cracker”, Journal of the Korean Physical Society; Vol. 60, No. 10, pp. 1753-1756, May, (2012).
[106] T.T. Wu, J.H. Huangb, F. Hu, C.H. Chang, W.L. Liu, T.H. Wang, C.H. Shen, J.M. Shieh, Y.L. Chueh, “Toward high efficiency and panel size 30x40 cm2 Cu(In,Ga)Se2 solar cell:Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature”, Nano Energy; 10, pp. 28 -36, (2014).
[107] C.H. Chen, W.C. Shih, C.Y. Chien, C.H. Hsu, Y.H. Wu, C.H. Lai, “A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In,Ga)Se2 absorbers without extra Se supply”, Solar Energy Materials & Solar Cells ;103, 25-29, (2012).
[108] http://pubs.usgs.gov/fs/2002/fs087-02 .
[109] W. Ki, H. W. Hillhouse, “Earth-Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non-Toxic Solvent”, Adv. Energy Mater.; 1, pp. 732-735, (2011).
[110] T. Maeda, S. Nakamura, T. Wada, “First-principles calculations of vacancy formation in In-free photovoltaic semiconductor Cu2ZnSnSe4”, Thin Solid Films; 519, pp0 7513-7516, (2011).
[111] A. Walsh, S. Chen, S.H. Wei, X.G. Gong, “Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4”, Adv. Energy Mater.; 2, pp. 400-409, (2012).
[112] S.H. Wei, S.B. Zhang, A. Zunger, “Band structure and stability of zinc-blende-based semiconductor”, Phys. Rev. B; 59, pp. E2478, (1999).
[113] B. J. Stanbery, S. Kincal, S. Kim, C. H. Chang, S. P. Ahrenkiel, G. Lippold, H. Neumann, T. J. Anderson, and O.D. Crisalle, “Epitaxial growth and characterization of CuInSe2 crystallographic polytypes”, J. Appl. Phys. ;91, pp. 3598, (2002).
[114] J. Eberhardta, J. Cieslak, H. Metzner, Th. Hahn, R. Goldhahn, F. Hudert, J. Kräußlich, U. Kaiser, A. Chuvilin, U. Reislöhner, W. Witthuhn, “Epitaxial and polycrystalline CuInS2 layers: Structural metastability and its influence on the photoluminescence”, Thin Solid Films; 517, pp. 2248-2251, (2009).
[115] S Chen, X. G. Gong, A Walsh, S.H. Wei, “Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4”, Appl. Phys. Lett.; 96, pp. 021902, (2010).
[116] S. Chen, X. G. Gong, A. Walsh, S.H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X=SX=S and Se) photovoltaic absorbers: First-principles insights”, Appl. Phys. Lett.; 94, pp. 041903, (2009).
[117] C. Julien, M. Eddrief, I. Samaras, M. Balkanski, ”Optical and electrical characterizations of SnSe, SnS2, and SnSe2 single crystal”, Materials Science and Engineering; B15, pp. 70-72, (1992).
[118] D.H. Kuo, W.D. Haung, Y.S. Huang, J.D Wu, Y.J. Lin, “Effect of post-deposition annealing on the performance of D.C. sputtered Cu2SnSe3 thin films”, Surface and Coating Technology; 205, pp. S196-S200, (2010).
[119] A. Nagaoka, K. Yoshino, Hi. Taniguchi, T. Taniyama, H. Miyake, “Growth of Cu2ZnSnSe4 single crystals from Sn solutions”, Journal of Crystal Growth; 354, pp.147-151, (2012).
[120] Y.Z. Li, X.D. Gao, C. Yang, F.Q. Huang, “The effects of sputtering power on optical and electrical properties of cupper selenide thin films deposition by magnetron sputtering”, Journal of Alloys and Compounds; 505, pp. 623-627 (2010).
[121] L. Vauche, L. Risch, Y. Sánchez, M. Dimitrievska, M. Pasquinelli, T. G. de Monsabert, P.P. Grand, S. Jaime-Ferrer, E. Saucedo, “8.2% pure selenide kesterite thin- fi lm solar cells from large-area electrodeposited precursors”, Prog. Photovolt: Res. Appl.; 24, pp. 38-51, (2016).
[122] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, D.B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency”, Energy Environ. Sci.; 5, pp. 7060, (2012).
[123] K. Sun, Z. Su, C. Yan, F. Liu, H. Cui, L. Jiang, Y. Shen, X. Hao, Y. Liu, “Flexible Cu2ZnSnS4 solar cells based on successive ionic layer adsorption and reaction method”, RSC Adv.; 4, pp. 17703-17708, (2014).
[124] N. Sabli, Z. A. Talib, W. M. M. Yunus, Z. Zainal, H. S. Hilal, M. Fujii, “Effect of Argon Gas on Photoelectrochemical Characteristics of Film Electrodes Prepared by Thermal Vacuum Evaporation from Synthesized Copper Zinc Tin Selenide”, Int. J. Electrochem. Sci.; 8, pp. 10910-10920, (2013).
[125] Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, “Supratik Guha, Cu2ZnSnSe4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length”, Adv. Energy Mater; 5, pp. 1401372, (2015).
[126] R.B.V. Chalapathy, G. S. Jung, B. T. Ahn, “Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells”, Solar Energy Materials & Solar Cells; 95, pp. 3216-3221, (2011).
[127] G. Brammertz, M. Buffière, S. Oueslati, H. ElAnzeery, K. Ben Messaoud, S. Sahayaraj, C. Köble, M. Meuris, J. Poortmans, “Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells”, APPLIED PHYSICS LETTERS; 103, pp. 163904 (2013).
[128] T. P. Dhakal, C.Y. Peng, R. R. Tobias, R. Dasharathy, C. R, “Westgate a, Characterization of a CZTS thin film solar cell grown by sputtering method”, Solar Energy; 100, pp. 23–30, (2014).
[129] C. Platzer-Björkman, J. Scragg, H. Flammersberger, T. Kubart, M. Edoff, “Influence of precursor sulfur content on film formation and compositional changes in Cu2ZnSnS4 films and solar cells”, Solar Energy Materials & Solar Cells; 98, pp. 110-117, (2012).
[130] Y. H. Jo, B. C. Mohanty, D. H. Yeon, S. M. Lee, Y. S. Cho, “Single elementary target-sputtered Cu2ZnSnSe4 thin film solar cells”, Solar Energy Materials & Solar Cells; 132, pp. 136-141, (2015).
[131] K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, “ Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency”, Sol. Energy Mater. Sol. Cells; 95, pp. 838, (2011).
[132] M.I. Amal, S. H. Lee, K. H. Kim, “Properties of Cu2ZnSn(SxSe1-x)4 thin films prepared by one-step sulfo-selenization of alloyed metal precursors”, Current Applied Physics; 14, pp. 916-921, (2014).
[133] S. Chen, A. Walsh, J.H. Yang, X. G. Gong, Lin Sun, P.X. Yang, J.H. Chu, S.H. Wei, “Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells”, Phys. Rev. B; 83, pp. 125201, (2011) .
[134] K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh, J. Y. Kim, J. Moon, “Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route”, Scientific Reports 3, Article number: 3069 (2013) doi:10.1038/srep03069.
[135] http://www.niea.gov.tw/epaper/epeper_detail.asp?C_ID=444
[136] http://gsmat10002.weebly.com/sem3034024494352641999030028.html
[137] http://faculty.ndhu.edu.tw/~pgml/SEM_EDS/theory.htm
[138] http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-TEM/FE-TEM010.pdf
[139] 林昆霖,”肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡”,奈米通訊,20卷No.2,PP. 34-38,(2013)。
[140] http://www.weixinyidu.com/n_818782
[141] 徐至凱,李亮延,許筌維,張軒瑞,柯俊豪,” 紫外光/可見光分光光譜儀 UV-Vis/NIR V670 薄膜檢測技術實習”, 南臺科技大學 - 太陽能材料與模組實驗室,(2014) 。
[142] 劉沛哲,” 不同銅銦比之CuInSe2薄膜光學特性研究” ,元智大學光電 工程學系碩士論文,(2014)。
[143] https://fr.wikipedia.org/wiki/Efficacit%C3%A9_quantique
[144] https://www.researchgate.net/figure/268692807_fig9_Fig-9-EQEIQE-of-three-sc-Si-cells-with-routine-or-novel-texture-process-The-weighted
[145] J. AbuShama, R. Noufi, S. Johnston, W. Scott, X. Wu, “Improved performance in CuInSe2 and surface-modified CuGaSe2 solar cells”. in Proceedings 31st IEEE PVSC Conference, pp. 299–302, (2005).
[146] S. Siebentritt, L. Gütay, D. Regesch, Y Aida., V. Depredurand,” Why do we make Cu(In,Ga)Se2 solar cells non-stoichiometric”. Sol. Energie Matter Sol. Cells; 119, pp. 18-25, (2013).
[147] Ch.von Klopmann, J. Djordjevic, E. Rudifier, R. Scheer,” Real-time studies of phase transformations in Cu-In-Se-S thin films.Surfurization of Cu-In precursors”, Journal of Crystal Growth; 289, pp. 121-133, (2006)
[148] T. G€odecke, T. Haalboom, F. Ernst, Z. Metall. 91, 622–634 (2000).
[149] M. L. Fearheiley, “The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals”, Sol. Cells; 16, pp. 91-100, (1986).
[150] V. Depredurand, Y. Aida, J. Larsen, T. Eisenbarth, A. Majerus, S.Siebentritt, “Surface treatment of CIS solar cells grown under Cu-excess”, 978-1-4244-9965-6/11/$26.00 ©2011 IEEE.
[151] R. Klenk, T. Walter, H. W. Schock, D. Cahen, ”Connectivity of pores and structural units in zeolites, pillared clays and nanoparticle assemblies”. Adv. Mater.; 5, pp. 114-119, (1993).
[152] C.H. Tsai, D. K. Mishra, C.Y. Su, J.M. Ting, “Effects of sulfurization and Cu/In ratio on the performance of the CuInS2 solar cell”, Int. J. Energy Res.; 38, pp. 418-428, (2014).
[153] E. P. Domashevskaya, V.V. Gorbachev, ”XPS and XES emission investigations of d–p resonance in some copper chalcogenides”, J ELECTRON SPECTROSC RELAT PH.; 114-116, pp. 901-908, (2001).
[154] M.V. Kuznetsov, E.V Shalaeva, “Evolution of CuInSe2 (112) surface due to annealing: XPS study”, Surface Science; 530, pp. L297–L301, (2003).
[155] P. Fan, G. X. Liang, X. Min. Cai, Z. H. Zheng, D. P. Zhang, "The influence of annealing temperature on the structural, electrical and optical properties of ion beam sputtered CuInSe2 thin films", Thin Solid Films; 519, pp. 5348-5352, (2011)
[156] E. P. Zaretskaya, V. F. Gremenok, V. Riede, W. Schmitz, K. Bente, V.B. Zalesski, O.V. Ermakov, "Raman spectroscopy of CuInSe2 thin films prepared by selenization" Journal of Physics and Chemistry of Solids; 64, pp. 1989-1993, (2003)
[157] K.G. Deepa, K.P. Vijayakumar, C. Sudhakartha, ”Lattice vibrations of sequentially evaporated CuInSe2 by Raman microspectrometry”, Materials Science in Semiconductor Processing; 15, pp. 120-124, (2012).
[158] M. Wang, X. Liu, C. Cao, C. Shi, “Synthesis of band-gap tunable Cu–In–S ternary nanocrystals in aqueous solution”, RSC Adv.; 2, pp. 2666-2670, (2012).
[159] S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells”, JOURNAL OF APPLIED PHYSICS; 108, pp. 124509, ( 2010 ).
[160] V. Depr’edurand, D. Tanaka, “Current loss due to recombination in Cu-rich CuInSe2 solar cells”, JOURNAL OF APPLIED PHYSICS; 115, pp. 044503, (2014).
[161] J. Zhang, W. Que, “CuInSe2 nanocrystals/CdS quantum dots/ZnO nano wire arrays heterojunction for photovoltaic applications”, Solar Energy Materials & Solar Cells; 103, pp. 30-34, (2012).
[162] S.H. Wei, S.B. Zhang, A. Zunger, ”Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Applied Physics Letters; 72, pp. 3199-3201, (1998).
[163] P.C. Tseng, P. Yua, H.C. Chen, Y.L. Tsai, H.W. Han, M.A Tsai, C.H Chang, H.C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures”, Sol. Energy Mater. Sol. Cells; 95, pp. 2610-6215, (2011).
[164] S.J. Wilson, M.C. Hutley,” The optical properties of “moth eye antireflection surfaces”, Opt. Acta; 29, pp. 993-1009, (1982).
[165] W.H. Southwell, ”Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces”, J. Opt. Soc. Am. A; 8, pp. 549- 553, (1991).
[166] D.H. Raguin, G.M. Morris,” Antireflection structured surfaces for the infrared spectral region”, Appl. Opt.; 32, pp. 1154-1167, (1993).
[167] N.D. Arora, J.R. Hauser, ”Antireflection Layer for GaAs Solar cells”, J. Appl. Phys.; 53, pp. 8839 -8845, (1982).
[168] B.K. Shin, T.I. Lee, J.Xiong, C. Hwang, G.Noh, J.H. Cho, J.M. Myoung,” Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells”, Sol. Energy Mater. Sol. Cells; 95, pp. 2650 -2654, (2011).
[169] T.P. Hsieh, C.C. Chuang, C.S. Wu, J.C. Chang, J.W. Guo, W.C. Chen,” Effects of residual copper selenide on CuInGaSe2 solar cells”, Solid-State Electronics,; 56(1), pp. 175-178, (2011).
[170] A. Cho, S. Ahn, J. H. Yun, J. Gwak, S. K. Ahn, K. Shin, J. Yoo, H. Song, K. Yoon,” The growth of Cu2−xSe thin films using nanoparticles”, Thin Solid Films; 546, pp. 299-307, (2013).
[171] A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, S. Siebentritt,”
[172] Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films:, Appl. Phys. Lett.; 98, pp. 101907, (2011).
[173] T. Gürel, C. Sevik, T. Çağın, ”Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures”, Physical Review B; 84, pp. 20501, (2011).
[174] J. He, L. Sun, S. Chen, Y. Chen, P. Yang, J. Chu,” Composition dependence of structure and optical properties of Cu2ZnSn(S,Se)4 solid solutions: An experimental study”, Journal of Alloys and Compounds; 511(1), pp. 129-132, (2012).
[175] G. Suresh Babu, Y.B. Kishore Kumar, P. Uday Bhaskar, Sundara Raja Vanjar, “Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films”, Solar Energy Materials and Solar Cells; 94(2), pp. 221-226, (2010).
[176] J.I. Pankove, Optical Processes in Semiconductors, Dover Inc., New York, 1975 p. 93.
[177] J.I. Pankove, in: Optical Processes in Semiconductors, Dover Inc., New York, 1975 p. 33.
[178] J. Zhang, W. Que, “CuInSe2 nanocrystals/CdS quantum dots/ZnO nano wire arrays heterojunction for photovoltaic applications”, Solar Energy Materials & Solar Cells; 103, pp. 30-34, (2012).
[179] A. Redinger, S. Siebentritt, ”Coevaporation of Cu2ZnSnSe4 thin films”, Applied Physics Letters; 97, pp. 092111-1-092111-3, (2010).
[180] H. Cui, X. Liu, N. Song, N. Li, F. Liu, X. Hao, “Impact of rapid thermal annealing of Mo coated soda lime glass substrate on device performance of evaporated Cu2ZnSnS4 thin film solar cells”, Materials Letters; 125, pp. 40-43, (2014).
[181] J. Muller, J. Nowoczin, H. Schmitt, ”Composition, structure and optical proper-ties of sputtered thin films of CuInSe2”, Thin Solid Films; 496, pp. 364-370, (2006).
[182] M.A. Contreras, B. Egaas, D. King, A. Swartzlander, ”Thorsten Dullweber Texture manipulation of CuInSe2 thin films”, Thin Solid Films; 361, pp. 167-171, (2000).
[183] O. Meglali, N. Attaf , A. Bouraiou, J. Bougdira, M.S. Aida , G. Medjahdi,” Chemical bath composition effect on the properties of electrodeposited CuInSe2 thin films”, Journal of Alloys and Compounds; 587, pp. 303-307, (2014).
[184] S.H. Wei, S. B. Zhang, A. Zunger, ”Effects of Na on the electrical and structural properties of CuInSe2”, Journal of Applied Physics; 85, pp. 7214, (1999).
[185] M.A. Contreras, M.J. Romero, R. Noufi, ”Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells”, Thin Solid Films; 511-512: pp. 51-54, (2006).
[186] M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, Rommel Noufi,” Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells”, Progress in Photovoltaics: Research and applications; 7(4), pp. 311-316, (1999).
[187] N. Ott, G. Hanna, U. Rau, J.H. Werner, H.P. Strunk,”Texture of Cu(In,Ga)Se2 thin films and nanoscale cathodoluminescence”, Journal of Physics: Condensed Matter; 16(2): pp. S85-S89, (2004).
[188] D. Uao, A. Rockett. (220) ORIENTED Cu(ln,Ga)Se, EVIDENCE THAT IT MAY IMPROVE SOLAR CELL PERFORMANCE. 0-7803-5772-8/00/$10.00 Q IEEE, (2000).
[189] E. Zillner, A. Paul, J. Jutimoosik, S. Chandarak, T. Monnor, S. Rujirawat, R. Yimnirun, X. Z. Lin, A. Ennaoui, Th. Dittrich, M. Lux-Steiner, “Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron X-ray absorption near edge structure analysis”, APPLIED PHYSICS LETTERS; 102, pp. 221908, (2013).
[190] D. Han, Y.Y. Sun, J. Bang, Y.Y. Zhang, H.B. Sun, X.B. Li, S. B. Zhang,” Deep electron traps and origin of p-type conductivity in the earth-abundant solar-cell material Cu2ZnSnS4”, PHYSICAL REVIEW B; 87, pp. 155206, (2013).
[191] B.T. Jheng, P.T. Liu, M.C. Wang, M.C. Wu, “Effects of ZnO-nanostructure antireflection coatings on sulfurization-free Cu2ZnSnS4 absorber deposited by single-step co-sputtering process”, APPLIED PHYSICS LETTERS; 103, pp. 052904, (2013).
[192] T.J. Hsueh, J.M. Shieh, Y.M. Yeh, “Hybrid Cd-free CIGS solar cell/TEG device with ZnO Nanowires”, Prog. Photovolt: Res. Appl.; 23, pp. 507-512, (2015).
[193] Y. Chae, J. T. Park, J. K. Koh, J.H. Kim, E. Kim, “All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel Wires”, Materials Science and Engineering B; 178 pp. 1117-1123, (2013).
[194] M.E. Abdelsalam, P.N. Bartlett, T. Kelf, J. Baumberg, “Wetting of Regularly Structured Gold Surfaces”, Langmuir; 21, pp. 1753 -1757, (2005).
[195] A. B. D. Cassie, S. Baxter, Trans. Faraday. Soc. 1944, 40, 546-551
[196] C.H. Liu, C.H. Chen, S.Y. Chen, Y.T. Yen, W.C. Kuo, Y.K. Liao, J.Y. Juang, H.C. Kuo, C.H. Lai, L.J. Chen, Y.L. Chueh, ”Large Scale Single-Crystal Cu(In,Ga)Se2 Nanotip Arrays For High Efficiency Solar Cell”, Nano Letters; 11, p. 4443-4448, (2011).
[197] K.H. Kim, I. Amal, “Growth of Cu2ZnSnSe4 Thin Films by Selenization of Sputtered Single-Layered Cu-Zn Sn Metallic Precursors from a Cu-Zn-Sn Alloy Target”, Electronic Materials Letters; 7, No. 3, pp. 225-230, (2011).
[198] G. Marcano, C. Rinco´n, G. Marı´n, R. Tovar, G. Delgado, “Crystal growth and characterization of the cubic semiconductor Cu2SnSe4”, J. Appl. Phys; 92, pp. 1811-1815, (2002).
[199] D. Park, D. Nam, S. Jung, S.J. An, J. Gwak, K. Yoon, J.H. Yun, H. Cheong, ” Optical characterization of Cu2ZnSnSe4 grown by thermal co-evaporation”. Thin Solid Films; 519, pp. 7386-7389, (2011).
[200] O. Volobujeva, J. Raudoja, E. Mellikov, M. Grossberg, S. Bereznev, R. Traksmaa, “Cu2ZnSnSe4 films by selenization of Sn-Zn-Cu sequential films”, Journal of Physics and Chemistry of Solids; 70, pp. 567-570, (2009).
[201] I. Shohji, T. Nakamura, F.Mori, S. Fujiuchi, ”Interface Reaction and Mechnical Properties of Lead-free Sn-Zn Alloy/Cu Joints”, Materials Transactions; 43, No.8, pp. 1797-1801, (2002).
[202] W. Bader and W. Gust, Welding Res. Supp., 48, p. 551, 1969.
[203] R.Gagliano, G. Ghosh, M. Fine, “Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate“, Journal of Electronic Materials; 31, pp. 1195-1202, (2002).
[204] T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa, K. Sakamoto, “Growth behavior of compound layers in Sn/Cu/Sn diffusion couples during annealing at 433–473 K”, Materials Science and Engineering A; 396, pp. 115-123, (2005).
[205] 鍾承翰, 銅-錫系統生成介金屬中主要擴散元素之研究,國立中央大學 化學工程與材料工程研究所碩士論文,(2007)。
[206] S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, J. H. Yun,” Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values”, Appl. Phys. Lett; 97, pp. 021905, (2010).
[207] A. L Donne, S. Marchionna, P. Garattini, R.A. Mereu, M. Acciarri, and S. Binetti, Effects of CdS Buffer Layers on Photoluminescence Properties of Cu2ZnSnS4 Solar Cells, International Journal of Photoenergy, Volume, Article ID 583058, 8 pages; http://dx.doi.org/10.1155/2015/583058. (2015)
[208] J.Song, S.S. Li, C.H. Huang, O.D. Crisalle, T.J. Anderson, ”Device modeling and simulation of the performance of Cu(In1−x,Gax)Se2 solar cells”, Solid-State Electronics; 48, pp. 73-79, (2004)
[209] X. Lina, J. Kavalakkatt, K. Kornhuber, S. Levcenko, M. Ch. Lux-Steiner, A. Ennaoui, ”Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors”, Thin Solid Films; 535, pp. 10-13, (2013).
[210] R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombara, P. J.Dale, S. Siebentritt, ”Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature Photoluminescence”, APPLIED PHYSICS LETTERS; 102, pp. 222108, (2013).
[211] T. Wada, N. Kohara, S. Nishiwaki, T. Negami,” Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films; 387, pp. 118-122, (2001).
[212] Y.J. Hsiao, T.J. Hsueh, J. Shieh, Y.M. Yeh, C.C. Wang, B.T. Dai, W.W. Hsu, J.Y. Lin,; C.H Shen, C.W. Liu, C. Hu, F.I. Yang, “Bifacial CIGS (11% efficiency)/Si Solar Cells by Cd-free and Sodium-free Green Process Integrated with CIGS TFTs”, IEEE International Electron Devices Meeting; IEEE: Washington, DC, 2011; pp 36.5.1-36.5.4 (2011).
[213] T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, “Cu(In1−x ,Gax )Se2 Thin Film Solar Cells Using Transparent Conducting Oxide Back Contacts for Bifacial and Tandem Solar Cells. In Proceedings of 3rd World Conference on Photovoltaic Energy Conversion; IEEE: Osaka, Japan; Vol. 3, p 2880 – 2884, (2003).
[214] S. H. Moon, S. J. Park, Y. J. Hwang, D.K. Lee, Y. Cho, D.W. Kim, B. K. Min, ” Printable Wide Band-gap Chalcopyrite Thin Films for Power Generating Window Applications”, Sci. Rep.; 4, pp. 4408, (2014).
[215] P. K. Sarswat, M. L. Free, ”Demonstration of a sol–gel synthesized bifacial CZTS photoelectrochemical cell”, Phys. Status Solidi (a); 208(12), pp. 2861-2864, (2011).
[216] Z. Yan, A. Wei, Y. Zhao, J. Liu, X. Chen, “Growth of Cu2ZnSnS4 thin films on transparent conducting glass substrates by the solvothermal method“, Mater. Lett.; 111, pp. 120-122, (2013).
[217] A. Ismail, J.W. Cho, S.J. Park, Y.J. Hwang, B.K. Min, ”Synthesis of Solution-Processed Cu2ZnSnSe4 Thin Films on Transparent Conducting Oxide Glass Substrates”, Bull. Korean Chem. Soc.; 35(7), pp. 1985-1988, (2014)
[218] Om Pal Singh, N. Muhunthan, V.N. Singh, K. Samanta, Nita Dilawar, ”Effect of temperature on thermal expansion and anharmonicity in Cu2ZnSnS4 thin films grown by co-sputtering and sulfurization”, Materials Chemistry and Physics; 146, pp. 452-455, (2014).
[219] S.Ishizuka, A.Yamada, P. Fons, S. Niki, “Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material”, J. Renew. Sustain. Energy; 1, pp. 013102, (2009).
[220] S.K. Choi and J.I. Lee, “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering”, J. Vac. Sci. Technol. A; 19, 2043, (2001).
[221] M.Fukawa, K. Sato, T. Tsukamoto, K. Adachi, H. Nishimura, “Development of tempered-glass substrates with TCO films for a-Si solar cells”, Solar Energy Materials and Solar Cells; 49 pp. 107-112, (1997).
[222] D. F. Dawson-Elli, C. B. Moore, R. R. Gay, C. L. Jensen, in Proceed-ings of the First World Conference on Photovoltaic Energy Conversion, p. 152, (IEEE, New York, 1994).
[223] D. Cahen, E. Moons, L. Chernyak, I. Lyubomirski, M. Bruening, A. Shan-zer, J. Libman, Proceedings of the 5th International Symposium for Uses of Se and Te, Brussels, p. 207, (1994),
[224] F.J. Haug, D. Rudmann, G. Bilger, H. Zogg, A.N. Tiwari, ”Comparison of structural and electrical properties of Cu(In, Ga)Se2 for substrate and superstrate solar cells”, Thin Solid Films; 403-404, pp. 293-296, (2002).
[225] C. Glynn, D. Aureau, G. Collins, S. O'Hanlon, A. Etcheberry, C. O'Dwye, ” Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping” Nanoscale; 7, pp. 20227-20237, (2015).
[226] P.M.P. Salome ́, P.A. Fernandes, J.P. Leita ̃o, M.G. Sousa, J.P. Teixeira, A.F. da Cunha, ”Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence”, J Mater Sci; 49, pp. 7425-7436, (2014).
[227] K. Woo, Y. Kim, J. Moon, “A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells”, Energy Environ. Sci.; 5, pp. 5340–5345, (2012).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top