跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/10/31 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧至亨
研究生(外文):Chih-Heng TENG
論文名稱:針對高光譜圖像的頻譜簽章之非區域均值演算法
論文名稱(外文):A spectral signature based non-local mean for hyperspectral image denoising
指導教授:林茂昭瑪莉 夏貝
指導教授(外文):Marie Chabert
口試委員:娜佛
口試委員(外文):Naveu
口試日期:2017-09-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:38
中文關鍵詞:高光譜圖像除噪非區域均值高光譜非區域均值
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文中介紹一種利用電磁頻譜特徵來除噪的新方法,此法名為高光譜非區域均值去噪演算法。傳統上,為高光譜圖像除噪的方法分成兩大類,一種是利用高光譜上的資訊,另外一種則是利用圖像區域上的資訊,此文中的演算法同時利用頻譜上的資訊與圖像區域上的資訊來除噪。利用圖像區域資訊來除噪的演算法,如平滑濾波器、非區域均值方法、非區域貝氏方法。而利用高光譜資訊來除噪的有主值分析(PCA)、最小噪音成分(MNF)、高光譜圖像最小誤差子空間分析(HySime)。此文中提出之方法企圖結合兩種除噪方法之優點並有以下三點主要貢獻。第一,減少演算法之複雜度。第二,關鍵參數之選取方法。第三,比較並融合既有演算法,並且得到實際測試之結果。
A new spectral signature method for hyperspectral images denoising named as hyperspectral non-local mean is proposed in this thesis. This method uses spectral information and spatial information to denoise hyperspectral images. Traditionally, spectral information and spatial information are used separately. Thus, there are two different groups of methods to denoise hyperspectral images, spatial algorithms and spectral algorithms. The spatial denoising methods such as smoothing filter, non-local mean and non-local Bayesian consider the correlation in an image. The spectral denoising methods such as PCA (Principal component analysis), HySime (Hyperspectral subspace identification by minimum error) and MNF (Minimum noise fraction) consider the correlation in spectral. Hyperspectral non-local mean takes the advantages of these two groups of algorithms and processes spectral information and spatial information in the same time. Our contributions are 1) reduction of the processing complexity of algorithm. 2) choice of the proper algorithm parameters according to the properties of hyperspectral images. 3) combination and comparison with state-of-the-art.
Contents

口試委員審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 The hyperspectral data sets . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Synthetic image generation . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Spectral denoising methods . . . . . . . . . . . . . . . . . . . . . . . . .8
2.3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Minimum Noise Fraction . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Hyperspectral signal identification by minimum error . . . . . . . 10
2.4 Spatial denoising methods. . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 2D non-local mean . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Quality measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Peak signal to noise ratio . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Average spectral angle distance . . . . . . . . . . . . . . . . . . . 12
2.5.3 Average universal image quality index . . . . . . . . . . . 12
2.5.4 Similar structure. . . . . . . . . . . . . . . . . . . . . . . 13
3. Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Hyperspectral non-local mean . . . . . . . . . . . . . . . . . . . . . . .17
3.1.1 The smoothing parameter h in the weighting function . . . . . . . .18
3.1.2 The patch size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4. Performance analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 The testing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.1 Reproduce the synthetic image . . . . . . . . . . . . . . . . . . . 21
4.1.2 Spectral and spatial denoising . . . . . . . . . . . . . . . . . . . . 21
4.2 Critical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 The smoothing paremeter h in weighting function . . . . . . . . 22
4.2.2 The patch size . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Performance of combination . . . . . . . . . . . . . . . . . . . . . . 32
5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES
[1]Antoni Buades, Bartomeu Coll, Jean-Michel Morel. “Non-Local Means Denoising.” Published in Image Processing On Line. September 2011.
[2]Bart Goossens, Hiêp Luong, Aleksandra Pizurica and Wilfried Philips. “An Improved Non-local Denoising Algorithm.” Ghent University, Depart of Telecommunications and Information Processing. (TELIN-IPI-IBBT) 2008.
[3]José M. P. Nascimento, and José M. Bioucas Dias. “Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data.” IEEE Transactions on Geoscience and Remote Sensing, VOL. 43, NO. 4, pp. 898-910. April 2005.
[4]Antoni Buades, Bartomeu Coll, Jean-Michel Morel. ‘’ A non-local algorithm for image denoising.‘’ IEEE Computer Vision and Pattern Recognition, VOL. 2. 2005.
[5]Guangchun Luo, Guangyi Chen, Ling Tian, Ke Qin, and Shen-En Qian. ‘’Minimum Noise Fraction versus Principal Component Analysis as a Preprocessing Step for Hyperspectral Imagery Denoising.’’ Canadian Journal of Remote Sensing, VOL. 42, NO. 2, pp. 106-116, April 2016.
[6]Lindsay I Smith. “A tutorial on Principal Components Analysis.” February 2002.
[7]José. Bioucas-Dias and José M. P. Nascimento. “Hyperspectral Subspace Identification.” IEEE Transactions on Geoscience and Remote Sensing, VOL. 46, NO. 8. pp. 2435-2445, August 2008.
[8]Zhou Wang, Alan C. Bovik. “A universal image quality index.” IEEE Signal Processing Letters, VOL. 9, NO. 3, pp. 81-84. March 2002.
[9]Rongrong Ji, Yue Gao, Richang Hong, Qiong Liu, Dacheng Tao and Xuelong Li. “Spectral-Spatial Constraint Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing, VOL. 52, NO. 3, pp. 1811-1823, March 2014.
[10]Guangyi Chen and Shen-En Qian. “Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage.” IEEE Transactions on Geoscience and Remote Sensing, VOL. 49, NO. 3, pp. 973-980, March 2011.
[11]G. Y. Chen and S. E. Qian. “Denoising and dimensionality reduction of hyperspectral imagery using wavelet packets, neighbour shrinking and principal component analysis.”
International Journal of Remote Sensing, VOL. 30, NO. 18, pp. 4889-4895, September 2009.
[12]Guangyi Chen, Tien D.Bui, Kha Gia Quach and Shen-EnQian. “Denoising Hyperspectral Imagery Using Principal Component Analysis and Block-Matching 4D Filtering.” Canadian Journal of Remote Sensing, VOL. 40, NO. 1, pp. 60-66, February 2014.
[13]Charles Kervrann and Jérôme Boulanger. “Optimal Spatial Adaption for Patch-Based Image Denoising.” IEEE Transactions on Image Processing, VOL. 15, NO. 10, pp. 2866-2878, October 2006.
[14]Marc Lebrun, Antoni Buades, Jean-Michel Morel. “Implementation of the ‘Non-Local Bayes’ Image Denoising Algorithm.” Published in Image Processing On Line. June 2013.
[15]Darwin T. Kuan, Alexander A. Sawchuk, Timothy C. Strand and Pierre Chavel. “Adaptive Noise Smoothing Filter for Image with Signal-Dependent Noise.” IEEE Transactions on Pattern Analysis and Machine Intelligence, VOL. PAMI-7, NO. 2, pp. 165-177, March 1985.
[16]Pierrick Coupé, Pierre Yger, Sylvain Prima, Pierre Hellier, Charles Kervrann and Christian Brillot. “An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images.” IEEE Transactions on Medical Imaging, VOL. 27, NO. 4, pp. 425-441, April 2008.
[17]Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh and Eero P. Simoncelli. “Image Quality Assessment: From Error Visibility to Structural Similarity.” IEEE Transaction on Image Processing, VOL. 13, NO. 4, pp. 600-612, April 2004.
[18]Kruse, F. A., Richardson, L. L., and Ambrosia, V. G. “Techniques Developed for Geologic Analysis of Hyperspectral Data Applied to Near-Shore Hyperspectral Ocean Data.” Presented at the Fourth International Conference on Remote Sensing for Marine and Coastal Environments, Orlando, Florida, 17 – 19 March, 1997.
[19]Carlos Gonzalez, Sebastian Lopez, Daniel Mozos and Roberto Sarmiento. “FAPG Implementation of the HySime Algorithm for the Determination of the Number of Endmembers in Hyperspectral Data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, VOL. 8, NO. 6, pp.2870-2883, June 2015.
[20]R. Roger and J. Arnold. “Reliably estimating the noise in AVIRIS hyperspectral imagers,” Int. J. Remote Sens., VOL. 17, NO. 10, pp. 1951–1962,1996.
[21]Tong Shuai, Xia Zhang, Shudong Wang, Lifu Zhang, Kun Shang, Xiaoping Chen, and Jinnian Wang. “A Spectral Angle Distance-Weighting Reconstruction Method for Filled Pixels of the MODIS Land Surface Temperature Product.” IEEE Geoscience and Remote Sensing Letters, VOL. 11, NO. 9, pp.1514-1518, September 2014
[22]Zhou Wang and Alan C. Bovik. “A Universal Image Quality Index.” IEEE Signal Processing Letters, VOL. 9, NO. 3, pp.81-84, March 2002
[23]Zhou Wang, Alan C. Bovik, Hamid R. Sheikh and Eero P. Simoncelli. “Image Quality Assessment: From Error Measurement to Structural Similarity.” IEEE Transactions on Image Processing, VOL. 13, NO. 1, pp.1-14, January 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top