跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林法毅
研究生(外文):Lin, Fa-Yi
論文名稱:具高效率的E類差動無線功率發射器藉電荷面積優化和差動誤差校準以實現零電壓切換
論文名稱(外文):A High-efficiency Differential Class-E Wireless Power Transmitter with the Charge Area Optimizer and Differential Error Calibrator for Zero Voltage Switching
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
口試委員:陳科宏王清松黃立仁
口試委員(外文):Chen, Ke-HorngWang Ching-SungHuang, Li-Ren
口試日期:2018-10-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:51
中文關鍵詞:無線電力傳輸系統E類功率放大器零電壓切換零電壓導數切換壓控補償電容電荷面積優化
外文關鍵詞:wireless power transferclass-E power amplifierzero voltage switchingzero voltage derivative switchingvoltage controlled compensation capacitancecharge area optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:938
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無線電力傳輸系統在近幾年逐漸成為了趨勢,同時擁有高功率又有高效率成為了最重要的課題。WPT系統中包括了發射端(TX)和接收端(RX),其中TX端會因為負載變化以及傳輸距離長短所造成的反射阻抗變化而造成影響,進而使共振頻率點偏移,此對效率和功率有著相當嚴重的影響。基於上述,最直觀亦是最常見的方法就是變頻,但因為A4WP規範其頻率必須處在6.78百萬赫茲正負15千赫茲,除此之外,會將此問題轉移至RX端,導致接收端也要變換頻帶至發射端一致的頻率。接著另一個方法就是藉由電容陣列去補償反射阻抗所偏移的量,但隨著功率上升,和電容串聯的開關就必須是可以承受高壓的元件,以及此電容陣列佔據了相當大地印刷版電路的面積。
由於當功率開關上的電壓是硬切換或逆向導通時,效率會大幅下降,因此零電壓及零電壓斜率轉換是非常重要的。本文採用了一個由E類差動無線功率發射器做為TX端的主體架構,並使用了一個總是關閉的電晶體作為壓控電容對其作類比式的補償,除了可以解決上述開關上高壓的問題外,亦可以達到高效率以及高功率的實現。
Wireless power transmission systems have gradually become a trend in recent years, having high power and high efficiency has become an important issue. The WPT system includes a transmitting side (TX) and a receiving side (RX). When the TX end is affected by the change of the reflected impedance due to the load change and the length of the transmission distance, it will let the resonance frequency point shift and impacts the efficiency and power. Based on the above, the most intuitive and most common method is frequency tuning, but the frequency must be at 6.78 MHz ± 15 kHz by the A4WP specification. Besides, the RX side needs to tune the frequency to the corresponding band. Then another method is to compensate the reflected impedance by the capacitor array, but as the power rises, the switch in series with the capacitor must be a component that can withstand high voltage, and the capacitor array occupies a relatively large PCB area.
Since the switching state on the power switch is hard-switched or reverse-conducted, the efficiency is low, so zero-voltage-switching (ZVS) and zero-voltage derivate switching (ZVDS) is important. This paper uses a class-E differential wireless power transmitter as the main structure of the TX side, and use an always-off transistor as a voltage-controlled capacitor in the analogy compensation. It not only solves the above-mentioned high voltage on the switch but achieves high efficiency and high power.
摘 要 i
ABSTRACT ii
誌 謝 iii
Contents iv
Figure Captions vi
Table Captions vii
Chapter 1 Introduction 1
1.1 Background of Wireless Power Transfer system 1
1.1.1 Benefits of Wireless 2
1.2 Category of WPT system 3
1.2.1 Magnetic induction power transfer 3
1.2.2 Magnetic resonance power transfer 5
1.2.3 Microwave/RF wave power transfer 6
1.2.4 Comparison 7
1.3 Motivation 8
1.4 Thesis Organization 8
Chapter 2 Prior Arts and Design Goals 9
2.1 Efficiency degradation in WPT system 9
2.2 Structure of Power Amplifier used in WPT system 11
2.2.1 Class-D PA 12
2.2.2 Class-E PA 13
2.3 Tuning adjustments 14
2.3.1 Frequency modulation 14
2.3.2 Capacitor modulation 15
2.3.3 Duty control modulation 16
2.3.4 Fractional capacitance tuning modulation 17
2.4 Design Goals for the proposed 6.78MHz resonant WPT system 18
2.4.1 Choosing of PA 19
2.4.2 Choosing of power switch 19
Chapter 3 Circuit implementation of the propesed WPT system 22
3.1 Architecture of the proposed WPT system 22
3.2 Optimum operation of Class-E PA 23
3.3 Wrong conduction state in Class-E PA 25
3.4 Impedance matching network (IMN) 27
3.5 Voltage Controlled Capacitor (VCC) 31
3.6 Differential Class-E power amplifier 33
3.7 Differential dead-time control 34
3.8 Discrete components design 35
3.9 Closed-loop controller 36
3.9.1 Time-Based Matching point Searching (TBMS) 36
3.9.2 Charge Area Matching Point Searching (CAMS) circuit 38
3.9.3 Matching Bias Generator (MBG) circuit 40
Chapter 4 Experimental Results 42
4.1 Chip Micrograph 42
4.2 Measured TBMS technique 42
4.3 Measured CAMS technique 44
4.4 Comparisons of other WPT system methodologies 46
Chapter 5 Conclusion and Future Work 48
5.1 Conclusion 48
5.2 Future Work 48
Reference 49
[1] S. Hui, W. Zhong, and C. Lee, “A critical review of recent progress in mid-range wireless Power Transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500–4511, Sep. 2014.
[2] C.-J. Chen, T.-H. Chu, C.-L. Lin, and Z.-C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 7, pp. 536–540, Jul. 2010.
[3] M. Kiani and M. Ghovanloo, “The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp. 2065–2074, Sep. 2012.
[4] K. Fotopoulou and B. Flynn, “Wireless power transfer in loosely coupled links: coil misalignment model,” IEEE Trans. Magn., vol. 47, no. 2, pp. 416–430, Feb. 2011.
[5] S. Cheon et al., “Circuit-model-based analysis of a wireless energy transfer system via coupled magnetic resonances,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906–2914, Jul. 2011.
[6] H. Li, J. Li, K. Wang, W. Chen, and X. Yang, “A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonance coupling,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3998–4008, Jul. 2015.
[7] W. Zhong and S. Hui, “Maximum energy efficiency tracking for wireless power transfer systems,” IEEE Trans, Power Electron., vol. 30, no. 7, pp. 4025–4034, Jul. 2015.
[8] N. Kim, K. Kim, J. Choi, and C. Kim, “Adaptive frequency with power level tracking system for efficient magnetic resonance wireless power transfer,” IEEE Power Electron. Lett., vol. 48, no. 8, pp. 452–454, Apr. 12, 2012.
[9] P. Si, A. P. Hu, and S. Malpas, “A frequency control method for regulating wireless power to implantable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 1, pp. 22–29, Mar. 2008.
[10] J. Pan, A. A. Abidi, D. Rozgić, H. Chandrakumar, and D. Marković, “An Inductively-Coupled Wireless Power-Transfer System that is Immune to Distance and Load Variations,” ISSCC Dig. Tech. Papers, pp. 382-383, Feb. 2017.
[11] Y. Lim, H. Tang, S. Lim, and J. Park, “An Adaptive Impedance-Matching Network Based on a Novel Capacitor Matrix for Wireless Power Transfer,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4403-4413, Aug. 2014.
[12] F. Mao, Y. Lu, U Seng-Pan, R. P. Martins, “A Reconfigurable Cross-Connected Wireless-Power Transceiver for Bidirectional Device-to-Device Charging with 78.1% Total Efficiency,” IEEE ISSCC, pp. 140-141, Feb. 2018.
[13] J. Kim, D. H. Kim, and Y. J. Park,“Free-Positioning Wireless Power Transfer to Multiple Devices Using a Planar Transmitting Coil and Switchable Impedance Matching Networks,”IEEE Trans. Microw. Theory Techn., vol. 64, no. 11, pp. 3714–3722, Nov. 2016.
[14] M. Vasic, O. Garcia, J. A. Oliver, P. Alou, D. Diaz, R. Prieto, and J. A. Cobos, “Envelope amplifier based on switching capacitors for high efficiency RF amplifiers,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1359–1368, Mar. 2012.
[15] M. Fu, H. Yin, X. Zhu, and C. Ma, “Analysis and Tracking of Optimal Load in Wireless Power Transfer Systems,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3952-3963, Jul. 2015.
[16] M. Fu, C. Ma, and X. Zhu, “A cascaded boost-buck converter for high efficiency wireless power transfer systems,” IEEE Trans. Ind. Informat., vol. 10, no. 3, pp. 1972–1980, Aug. 2014.
[17] H. Kennedy, R. Bodnar, T. Lee, and W. R-White, “A Self-Tuning Resonant Inductive Link Transmit Driver Using Quadrature-Symmetric Phase-Switched Fractional Capacitance,” ISSCC Dig. Tech. Papers, pp. 370-371, Feb. 2017.
[18] H. Kennedy, R. Bodnar, T. Lee, and W. R-White, “A Self-Tuning Resonant Inductive Link Transmit Driver Using Quadrature-Symmetric Delay Trimmable Phase-Switched Fractional Capacitance,” IEEE Journal of Solid-State Circuits, pp. 1694-1706, JUN. 2018.
[19] G. A. Kendir, W. Liu, G. Wang, M. Sivaprakasam, R. Bashirullah, M. S. Humayun, and J. D. Weiland, “An optimal design methodology for inductive power link with class-E amplifier,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 5, pp. 857–866, May 2005.
[20] J. J. Casanova, Z. N. Low, and J. Lin, “Design and Optimization of a Class-E Amplifier for a Loosely Coupled Planar Wireless Power System,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 56, no. 11, pp. 830–834, Nov.2009.
[21] Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1801–1812, May. 2009.
[22] A. Grebennikov and N. O. Sokal, Switched mode RF Power Amplifiers. Oxford, U.K.: Newnes, 2007.
[23] M. Kazimierczuk and K. Puczko, “Exact analysis of Class-E tuned power amplifier at any Q and switch duty cycle,” IEEE Trans. Circuits Syst., vol. 34, no. 2, pp. 149–159, Feb. 1987.
[24] D. Kessler and M. Kazimierczuk, “Power losses and efficiency of Class-E power amplifier at any duty ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1675–1689, Sep. 2004.
[25] T. Suetsugu andM.Kazimierczuk, “Design procedure ofClass-E amplifier for off-nominal operation at 50% duty ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, pp. 1468–1476, Jul. 2006.
[26] T. Suetsugu and M. Kazimierczuk, “Analysis and design of Class-E amplifier with shunt capacitance composed of nonlinear and linear capacitances,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 7, pp. 1261–1268, Jul. 2004.
[27] M. Acar, A. Annema, and B. Nauta, “Analytical design equations for Class-E power amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 12, pp. 2706–2717, Dec. 2007.
[28] F. Raab, “Idealized operation of the class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 24, no. 12, pp. 725–735, Dec. 1977.
[29] W. Zhang, S.-C. Wong, C. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series–series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191–200, Jan. 2014.
[30] C.-S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995–1002, Jul. 2004.
[31] J. Kim, D.-H. Kim, and Y.-J. Park, “Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2807–2813, May 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用於多裝置充電之具有自動切換斜率追蹤控制之6.78兆赫茲氮化鎵E類共振式無線電力傳輸發射器
2. 具有最佳轉換比快速搜索方案的全積體多轉換比切換式電容直流對直流電壓轉換器
3. 主動諧振電路具有動態諧振週期控制技術之快速零電壓切換氮化鎵主動箝位返馳式轉換器
4. 應用於高解析度及動態有效距離自駕車光達系統具有電流脈衝平衡技術達到次奈秒電流脈衝寬度之數位型砷化鎵驅動器
5. 增強波跟蹤控制型降壓電源轉換器的輕載效率
6. 應用於物聯網之具有高效率之時序降壓型直流對直流轉換器基於脈衝寬度調變及脈衝頻率調變無縫轉換控制
7. 帶有可調式電容技術的低輸出漣波和快速暫態響應 三級單電感三輸出電壓轉換器
8. 具有逆向導通校正技術之6.78兆赫茲氮化鎵差動式E類共振式無線電力傳輸系統
9. 使用雙側穩壓控制於零電壓切換最佳化之準諧振反馳式轉換器
10. 67%輸出電壓漣波降低和真隨機噪聲注入堆疊式數位低壓差穩壓器,用於電源側通道攻擊保護
11. 動態充電電流調節技術利用精確電流控制和溫度控制技術之雙迴路以達到1.6倍快速的鋰離子充電技術且擁有高達99.6%的高準確充電電流
12. 改良帶有阻尼因子控制頻率補償用於快速響應時間和寬負載電容變化之高解析度三級運算放大器
13. 應用於音訊放大器具弦波參考電壓追蹤功能之單電感雙極性輸出直流-直流電源轉換器
14. 基於平方根漏電流補償機制之低功耗、低溫度係數全互補式金屬氧化物半導體電壓基準源設計
15. 具有正和負輸出的雙相串聯電容直流對直流轉換器