|
[1] S. Hui, W. Zhong, and C. Lee, “A critical review of recent progress in mid-range wireless Power Transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500–4511, Sep. 2014. [2] C.-J. Chen, T.-H. Chu, C.-L. Lin, and Z.-C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 7, pp. 536–540, Jul. 2010. [3] M. Kiani and M. Ghovanloo, “The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp. 2065–2074, Sep. 2012. [4] K. Fotopoulou and B. Flynn, “Wireless power transfer in loosely coupled links: coil misalignment model,” IEEE Trans. Magn., vol. 47, no. 2, pp. 416–430, Feb. 2011. [5] S. Cheon et al., “Circuit-model-based analysis of a wireless energy transfer system via coupled magnetic resonances,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906–2914, Jul. 2011. [6] H. Li, J. Li, K. Wang, W. Chen, and X. Yang, “A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonance coupling,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3998–4008, Jul. 2015. [7] W. Zhong and S. Hui, “Maximum energy efficiency tracking for wireless power transfer systems,” IEEE Trans, Power Electron., vol. 30, no. 7, pp. 4025–4034, Jul. 2015. [8] N. Kim, K. Kim, J. Choi, and C. Kim, “Adaptive frequency with power level tracking system for efficient magnetic resonance wireless power transfer,” IEEE Power Electron. Lett., vol. 48, no. 8, pp. 452–454, Apr. 12, 2012. [9] P. Si, A. P. Hu, and S. Malpas, “A frequency control method for regulating wireless power to implantable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 1, pp. 22–29, Mar. 2008. [10] J. Pan, A. A. Abidi, D. Rozgić, H. Chandrakumar, and D. Marković, “An Inductively-Coupled Wireless Power-Transfer System that is Immune to Distance and Load Variations,” ISSCC Dig. Tech. Papers, pp. 382-383, Feb. 2017. [11] Y. Lim, H. Tang, S. Lim, and J. Park, “An Adaptive Impedance-Matching Network Based on a Novel Capacitor Matrix for Wireless Power Transfer,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4403-4413, Aug. 2014. [12] F. Mao, Y. Lu, U Seng-Pan, R. P. Martins, “A Reconfigurable Cross-Connected Wireless-Power Transceiver for Bidirectional Device-to-Device Charging with 78.1% Total Efficiency,” IEEE ISSCC, pp. 140-141, Feb. 2018. [13] J. Kim, D. H. Kim, and Y. J. Park,“Free-Positioning Wireless Power Transfer to Multiple Devices Using a Planar Transmitting Coil and Switchable Impedance Matching Networks,”IEEE Trans. Microw. Theory Techn., vol. 64, no. 11, pp. 3714–3722, Nov. 2016. [14] M. Vasic, O. Garcia, J. A. Oliver, P. Alou, D. Diaz, R. Prieto, and J. A. Cobos, “Envelope amplifier based on switching capacitors for high efficiency RF amplifiers,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1359–1368, Mar. 2012. [15] M. Fu, H. Yin, X. Zhu, and C. Ma, “Analysis and Tracking of Optimal Load in Wireless Power Transfer Systems,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3952-3963, Jul. 2015. [16] M. Fu, C. Ma, and X. Zhu, “A cascaded boost-buck converter for high efficiency wireless power transfer systems,” IEEE Trans. Ind. Informat., vol. 10, no. 3, pp. 1972–1980, Aug. 2014. [17] H. Kennedy, R. Bodnar, T. Lee, and W. R-White, “A Self-Tuning Resonant Inductive Link Transmit Driver Using Quadrature-Symmetric Phase-Switched Fractional Capacitance,” ISSCC Dig. Tech. Papers, pp. 370-371, Feb. 2017. [18] H. Kennedy, R. Bodnar, T. Lee, and W. R-White, “A Self-Tuning Resonant Inductive Link Transmit Driver Using Quadrature-Symmetric Delay Trimmable Phase-Switched Fractional Capacitance,” IEEE Journal of Solid-State Circuits, pp. 1694-1706, JUN. 2018. [19] G. A. Kendir, W. Liu, G. Wang, M. Sivaprakasam, R. Bashirullah, M. S. Humayun, and J. D. Weiland, “An optimal design methodology for inductive power link with class-E amplifier,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 5, pp. 857–866, May 2005. [20] J. J. Casanova, Z. N. Low, and J. Lin, “Design and Optimization of a Class-E Amplifier for a Loosely Coupled Planar Wireless Power System,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 56, no. 11, pp. 830–834, Nov.2009. [21] Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1801–1812, May. 2009. [22] A. Grebennikov and N. O. Sokal, Switched mode RF Power Amplifiers. Oxford, U.K.: Newnes, 2007. [23] M. Kazimierczuk and K. Puczko, “Exact analysis of Class-E tuned power amplifier at any Q and switch duty cycle,” IEEE Trans. Circuits Syst., vol. 34, no. 2, pp. 149–159, Feb. 1987. [24] D. Kessler and M. Kazimierczuk, “Power losses and efficiency of Class-E power amplifier at any duty ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1675–1689, Sep. 2004. [25] T. Suetsugu andM.Kazimierczuk, “Design procedure ofClass-E amplifier for off-nominal operation at 50% duty ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, pp. 1468–1476, Jul. 2006. [26] T. Suetsugu and M. Kazimierczuk, “Analysis and design of Class-E amplifier with shunt capacitance composed of nonlinear and linear capacitances,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 7, pp. 1261–1268, Jul. 2004. [27] M. Acar, A. Annema, and B. Nauta, “Analytical design equations for Class-E power amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 12, pp. 2706–2717, Dec. 2007. [28] F. Raab, “Idealized operation of the class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 24, no. 12, pp. 725–735, Dec. 1977. [29] W. Zhang, S.-C. Wong, C. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series–series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191–200, Jan. 2014. [30] C.-S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995–1002, Jul. 2004. [31] J. Kim, D.-H. Kim, and Y.-J. Park, “Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2807–2813, May 2015.
|