跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張智鈞
研究生(外文):Chih Chun Chang
論文名稱:以平行耦合線結構設計雙頻耦合線耦合器及鼠競耦合器
論文名稱(外文):Design of Dual-Band Coupled-Line and Rat-Race Couplers With Parallel Coupled-Line Structures
指導教授:金國生
指導教授(外文):K. S. Chin
學位類別:博士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:111
中文關鍵詞:耦合線耦合器鼠競耦合器雙頻耦合器前向耦合高頻率比強耦合量
外文關鍵詞:Coupled-line couplerrat-race couplerdual-band couplerforward wave couplinghigh frequency ratiostrong coupling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出多種平行耦合線結構設計雙頻耦合線耦合器及鼠競耦合器。論文第一主題為具有高通帶頻率比特性之雙頻耦合器設計,共提出四種新穎的平行耦合線結構。第一種為三段耦合線級聯式結構,具有高頻率比之特點,設計雙頻頻率為0.84和5.17 GHz之雙頻耦合器,達成耦合量分別為 10.6與 10.8 dB以及隔離度分別為 22.3與 16.8 dB、相位差分別為 90.5與 89.6。第二種為耦合線中間搭接殘段式結構,具有高頻率比、小尺寸和容易實作之特點,以其設計雙頻頻率為0.7和2.6 GHz之耦合器,達成耦合量分別為 11.3和 11.1 dB、隔離度分別為 33.43與 24.9 dB以及相位差分別為 90.9與 87.1。第三種為耦合-不耦合-耦合線結構,並於連接處搭接殘段,利用結構上重複耦合之特性,可達成強耦合量。設計雙頻頻率為0.7和2.6 GHz之耦合器,達成耦合量分別為 2.96和 3.85 dB、隔離度分別為 30.14與 20.47 dB以及相位差分別為 90.16與 87.83。第四種為不耦合-耦合-不耦合線結構,具有高頻率比、強耦合量、前向耦合以及微小化之優點,設計0.7和2.55 GHz規格之耦合器,可達成耦合量分別為 3.46和 3.3 dB、隔離度分別為 25.77與 16.8 dB以及相位差分別為 91.01與 86.75。上述電路均完成詳細設計公式推導及參數分析圖表,電路實測結果特性亦相當良好,可符合模擬預期。論文第二主題為雙頻 −90/+90耦合線結構及在雙頻鼠競耦合器之應用。本論文提出於耦合線中間搭接殘段,並於耦合線對向端接地之傳輸線結構,可達成雙頻 −90/+90電性長度。此結構可取代傳統之270 (3/4)線,具有雙頻、高等效阻抗及微小化等優點。本論文將其運用在1:4雙頻鼠競耦合器設計,在工作頻率為2.4與5.1 GHz時,耦合量為 −6.9以及 −7.1 dB、隔離度分別為 29.6與 18.4 dB、相位差S21−S31分別為 −2.3 and 1.5 以及 S24−S34分別為177.2 and −178.7,特性良好。
This thesis is classified into two research topics regarding dual-band coupled-line couplers and rat-race couplers with various parallel coupled-line structures. The first topic is designs of dual-band couplers with wide separation between bands, in which four novel parallel coupled-line structures are presented. The first coupler (Coupler A) consists of three cascaded coupled-line sections with the advantage of high frequency ratio. The coupling levels of 10.6 and 10.8 dB, isolated levels of 22.3 and 16.8 dB, and phase differences of 90.5 and 89.6 are observed at 0.84 and 5.17 GHz, respectively. The second coupler (Coupler B) is composed of coupled lines with stubs tapped at their center, from which 11.3 and 11.1 dB couplings, 33.43 and 24.9 dB isolatings, and phase differences of 90.9 and 87.1 can be obtained at 0.7 and 2.6 GHz, respectively. Coupler B has advantages of a high band ratio, compact size, and easy fabrication. The third one (Coupler C) consists of the coupled-uncoupled-coupled lines with stubs tapped at the junctions. The proposed structure has the advantages of high band ratio and strong coupling because of the constructed repeat-coupled structure. An experimental Coupler C with operational frequencies of 0.7 and 2.6 GHz is fabricated and achieved coupling levels of 2.96 and 3.85 dB, isolated levels of 30.14 and 20.47 dB, and phase differences of 90.16 and 87.83, respectively. Coupler D is composed of uncoupled-coupled-uncoupled lines and has the advantages of high band ratio, strong coupling level, forward wave, and compactness. An experimental Coupler D is observed to obtain coupling levels of 3.46 and 3.3 dB, isolated levels of 25.77 and 16.8 dB, and phase differences of 91.01 and 86.75 at 0.7 and 2.55 GHz, respectively. The detailed design equations and parameter analysis are introduced in this thesis. The measured results are in good agreement with the simulated results.
The second topic is focused on the dual-band transmission lines, which has the advantages of −90/+90 at two arbitrary frequencies and realizable high equivalent characteristic impedances. The proposed structure is composed of diagonal-shorted coupled lines with stubs tapped at their center. This structure can be applied to replace the conventional 270(3/4) line with dual-band operation, high equivalent characteristic impedances, and compactness. An experimental 2.4/5.1 GHz rat-race coupler with 1:4 power-split ratio is fabricated. The measured results show excellent dual-band performance and the coupling levels of −6.9 and −7.1 dB and isolated levels of 29.6 and 18.4 dB are observed at 2.4 and 5.1 GHz, respectively. The phase differences S21−S31 are −2.3 and 1.5 and S24−S34 are 177.2 and −178.7 at 2.4 and 5.1 GHz, respectively.
Content
Recommendation Letter from the Thesis Advisor .......................................
Dissertation Oral Defense Committee Certification.....................................
誌謝............................................................................................................iii
中文摘要 ...................................................................................................iv
Abstract......................................................................................................vi
Content.....................................................................................................viii
List of Figures............................................................................................xi
List of Tables............................................................................................. xv
Chapter 1 Introduction................................................................................ 1
1-1 Preface............................................................................................... 1
1-2 Motivation......................................................................................... 2
1-2-1 Dual-band coupler...................................................................... 3
1-2-2 Dual-band transmission line....................................................... 4
1-3 Outline............................................................................................... 5
Chapter 2 Dual-Band Loosely-coupled Couplers With Wide Separation
Between Bands ........................................................................................... 7
2-1 Dual-Band Cascaded Coupled-Line Coupler With High Band Ratio................................................................................................................. 8
2-1-1 Design Equations ....................................................................... 9
2-1-2 Parameter Analysis................................................................... 11
2-1-3 Design and Measurement......................................................... 14
2-2 Dual-Band Stub-Tapped Coupled-Line Coupler With Compact Size
............................................................................................................... 19
2-2-1 Design Equations ..................................................................... 19
2-2-2 Analysis of Design Curves....................................................... 22
2-2-3 Design and Measurement......................................................... 27
Chapter 3 Dual-Band Strongly-Coupling Couplers With Wide Separation
Between Bands ......................................................................................... 34
3-1 Dual-Band −3 dB Coupler with High Band Ratio.......................... 34
3-1-1 Operation Mechanism of Repeat-Coupled Structure............... 35
3-1-2 Design Equations ..................................................................... 38
3-1-3 Analysis and Design Curves .................................................... 40
3-1-4 Design and Measurement......................................................... 47
3-2 End-Connected Coupled-Line Coupler With Strong Forward-Wave
Coupling ................................................................................................ 51
3-2-1 Design Equations ..................................................................... 53
3-2-2 Parameter Analysis................................................................... 56
3-2-3 Design and Measurement......................................................... 62
Chapter 4 Design of Dual-Band −90/+90 Transmission Lines for
Miniaturized Dual-Band Rat-Race Couplers............................................ 67
4-1 Design of Dual-Band −90/+90 Transmission Lines.................... 68
4-1-1 Design Equations ..................................................................... 69
4-1-2 Parameter Analysis................................................................... 71
4-2 Miniaturized Dual-Band Rat-Race Couplers.................................. 73
Chapter 5 Conclusion and Future Work ................................................... 78
5-1 Conclusion ...................................................................................... 78
5-2 Future Work .................................................................................... 79
References................................................................................................. 80
Publication List......................................................................................... 92


List of Figures
Fig. 2-1 Schematic of the proposed dual-band coupler with three cascaded coupled-line sections. 8
Fig. 2-2 Impedances (Ze2, Zo2) and impedance ratio Ze2/Zo2 versus band ratio fH/fL with various Ze1 values and c  10 dB. 13
Fig. 2-3 Impedances Ze2 and Zo2 versus band ratio fH/fL with various couplings and Ze1  60. 14
Fig. 2-4 Simulated and measured responses of coupler: (a) |S21|. (b) |S31|. (b) |S11| and |S41|. (c) Phase difference S31S21. 17
Fig. 2-5 Photograph of the proposed Coupler A 18
Fig 2-6 Schematic of the stub-tapped coupled-line coupler (Coupler B). 19
Fig. 2-7 Plots of Ze and Zo versus band ratio fH/fL at various coupling levels: (a) Zm  50  and r  3; (b) Zm  80  and r  4. 24
Fig. 2-8 Mode impedances: (a) Ze and (b) Zo versus band ratio fH/fL with various rq values, c  11 dB, and Zm  80 . 25
Fig. 2-9 Design curves of the electrical lengths  and m versus band ratio fH/fL. 26
Fig. 2-10 Bandwidth versus Zm with 11 dB coupling level, rf  3.71, and r  4. FBW denotes the fractional bandwidth. 26
Fig. 2-11 Theoretical frequency responses of Coupler B: (a) |S11| and |S41|; (b) |S21|, |S31|, and S31S21 (with fL  0.7, fH  2.6 GHz, rf  3.71, c  11 dB, r  4, Ze  56.38 , Zo  32.89 ,   38.22, Zm  80 , and m  152.88). 30
Fig. 2-12 Simulated and measured S-parameter responses of Coupler B. (a) |S11| and |S41|. (b) |S21| and |S31|. (c) S31S21. (d) Photograph of Coupler B. 32
Fig. 3-1 (a) Schematic of the proposed dual-band coupled-line coupler. (b) Simplified illustration of the repeat-coupled effects for 3-dB coupling. 35
Fig. 3-2 Half circuit of Coupler C for analysis. 38
Fig. 3-3 Design curves of Ze and Zl versus rf with various (rq1, rq2) and Zm: (a) (rq1, rq2)  (1, 1), (b) (rq1, rq2)  (2, 1), (c) (rq1, rq2)  (1, 2), and (d) (rq1, rq2)  (2, 2). 44
Fig. 3-4 Design curves of Ze/Zo versus rf : (a) (rq1, rq2)  (2, 1). (b) (rq1, rq2)  (2, 2). 45
Fig. 3-5 S-parameter responses with various Zm with (rq1, rq2)  (2, 2) and rf  ( 4.3). (a) |S21| & |S31|. (b)|S11| & |S41|. 46
Fig. 3-6 Simulated and measured S-parameter responses of Coupler C. (a) |S11| and |S41|. (b) |S21| and |S31|. (c) S31S21. (d) Photograph of Coupler C. 50
Fig. 3-7 (a) Proposed dual-band forward-wave coupled-line coupler (Coupler D), (b) even-mode half circuit, (c) odd-mode half circuit. 52
Fig. 3-8 Design curves of impedances Ze, Zo, and Zm versus band ratio fH/fL: (a) r  1, (b) r  2, and (c) r  3, with c  3 dB. 58
Fig. 3-9 Ze, Zo, and impedance ratio Ze/Zo versus coupling level: (a) r  1 (rf  2 and rf  2.42) and (b) rf  3.71 (r  1 and r  2). (c) Zm versus coupling level with various rf and r values. 59
Fig. 3-10 Theoretical frequency responses of Coupler D, with c  3 dB, fL  0.7, fH  2.6 GHz, and rf  3.71. (a) r  1 (Ze  80 , Zo  11 ,   38.22, Zm  42.19 , and m  38.22). (b) r  2 (Ze  45 , Zo  24.84 ,   76.44, Zm  47.8 , and m  38.22). 61
Fig. 3-11 Simulated and measured S-parameter responses of Coupler C. (a) Photograph of Coupler C. (b) |S11| and |S31|. (c) |S21| and |S41|. (d) S41S21. 65
Fig. 4-1 Illustrative applications of +270 (3/4) transmission lines: (a) rat-race coupler and (b) balun. 68
Fig. 4-2 Schematic of the proposed dual-band 90/+90 transmission line constructed using T-shaped coupled-line structure. 69
Fig. 4-3 Impedances Zo and Zm versus Ze with various Zd at (a) ff  0.9 and fs  1.8 GHz and (b) ff  2.4 and fs  5.2 GHz. 72
Fig. 4-4 Responses of the equivalent Zd and S21 of the proposed dual-band line (Ze  60 , Zo  27.24 ,   56.8, and Zm  91.52 ). 73
Fig. 4-5 Experimental dual-band rat-race coupler with 1:4 power-split ratio: (a) Miniaturized dual-band rat-race coupler with proposed dual-band transmission lines, (b) simulated |Sij|, (c) measured |Sij|, (d) phase difference. 77



List of Tables
Table 2-1 Comparisons of Measured Results for the Proposed Coupler A,
B and Published Studies ........................................................................... 33
Table 3-1 Comparisons of the Fabricated Coupler in This Study and the
Couplers From Other Published Studies .................................................. 48
Table 3-2 Comparisons of Measured Results for the Proposed Coupler D
and Published Studies............................................................................... 66
Table 4-1 Design Parameters of the Experimental Dual-Band Rat-Race
Coupler...................................................................................................... 75
Table 4-2 Performance Comparison of Proposed and Existing Dual-Band
Rat-Race Couplers.................................................................................... 75
[1] A. R. Rofougaran, M. Rofougaran, and A. Behzad, "Radios for next
generation wireless networks," IEEE Microw. Mag., vol. 6, no. 1,
pp. 38-43, Apr. 2005.
[2] C.-K. Hsu and S.-J. Chung, "Compact multiband antenna for
handsets with a conducting edge," IEEE Trans. Antennas Propag.,
vol. 63, no. 11, pp. 5102-5107, Aug. 2015.
[3] S. Jamilan, M. A. Antoniades, J. Nourinia, and M. N. Azarmanesh,
"A compact multiband printed dipole antenna loaded with two
unequal parallel NRI-TL metamaterial unit cells," IEEE Trans.
Antennas Propag., vol. 63, no. 9, pp. 4244-4250, July 2015.
[4] T. Furuta, H. Okazaki, and S. Narahashi, "Novel reconfigurable
matching network for compact multi-band PA," 2012 International
Conference on Wireless Information Technology and Systems
(ICWITS), Maui, USA, Nov. 11-16, 2012.
[5] A. Fukuda, H. Okazaki, S. Narahashi, and T. Nojima, "A
concurrent multi-band power amplifier with compact matching
networks," 2011 URSI General Assembly and Scientific Symposium,
Istanbul, Turkey, Aug. 13-20, 2011.
[6] H. Magnusson and H. Olsson, "Multiband multi-standard
transmitter using a compact power amplifier driver," 2005 Radio
Frequency integrated Circuits (RFIC) Symposium, Long Beach,
USA, June 12-14, 2005.
[7] Y.-J. Chen and R.-B. Wu, "A wide-band multiport planar power-divider design using matched sectorial components in radial
arrangement," IEEE Trans. Microw. Theory Techn., vol. 46, no. 8,
Aug. 1998.
[8] L. K. Yeung and Y. E. Wang, "Mode-based beamforming arrays for
miniaturized platforms," IEEE Trans. Microw. Theory Techn., vol.
57, no. 1, pp. 45-52, Jan. 2009.
[9] J. Madic, P. Bretchko, S. Zhang, R. Shumovich, and R. McMorrow,
"Accurate power control technique for handset PA modules with
integrated directional couplers," IEEE International Microwave
symposium (IMS), Philadelphia, USA, Jane 8-13, 2003.
[10] K. Staszek, J. Sorocki, P. Kaminski, K. Wincza, and S.
Gruszczynski, "A broadband 3 dB tandem coupler utilizing
right/left handed transmission line sections," IEEE Microw.
Wireless Compon. Lett., vol. 24, no. 4, pp. 236-238, Apr. 2014.
[11] J. Kim and J.-G. Yook, "A miniaturized 3 dB 90° hybrid coupler
using coupled-line section with spurious rejection," IEEE Microw.
Wireless Compon. Lett., vol. 24, no. 11, pp. 766-768, Nov. 2014.
[12] T. Fujii, I. Ohta, T. Kawai, and Y. Kokubo, "A construction of
coupled-line 3-dB couplers using quarter-wave connecting lines,"
2005 35th European Microwave Conference (EuMC), Paris, France,
Oct. 4-6, 2005.
[13] Y. Wu, W. Sun, S.-W. Leung, Y. Diao, K.-H. Chan, and Y.-M. Siu,
"Single-layer microstrip high-directivity coupled-line coupler with
tight coupling," IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 746-753, Feb. 2013.
[14] S. Gruszczynski, K. Wincza, and K. Sachse, "Design of
compensated coupled-stripline 3-dB directional couplers, phase
shifters and magicTs—Part II: Broadband coupled-line circuits,"
IEEE Trans. Microw. Theory Techn., vol. 54, no. 9, pp. 3501-3507,
Sep. 2006.
[15] K.-S. Chin, M.-C. Ma, Y.-P. Chen, and Y.-C. Chiang, "Closed-form
equations of conventional microstrip couplers applied to design
couplers and filters constructed with floating-plate overlay," IEEE
Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1172-1179, May
2008.
[16] H. Zhang and K. J. Chen, "A stub tapped branch-line coupler for
dual-band operations," IEEE Microw. Wireless Compon. Lett., vol.
17, no. 2, pp. 106-108, Feb. 2007.
[17] J.-H. Yu, J.-C. Cheng, and Y.-H. Pang, "Design of a dual-band
miniaturized 90° branch-line coupler with coupled lines," 2011 Asia
Pacific Microwave Conference (APMC2011), Melbourne, Australia,
Dec. 5–8, 2011.
[18] C.-H. Yu and Y.-H. Pang, "Dual-band unequal-power quadrature
branch-line coupler with coupled lines," IEEE Microw. Wireless
Compon. Lett., vol. 23, no. 1, pp. 10-12, Jan. 2013.
[19] L. Piazzon, P. Saad, P. Colantonio, F.Giannini, K. Andersson, and C.
Fager, "Branch-line coupler design operating in four arbitrary
frequencies," IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 67-69, Feb. 2012.
[20] M.-J. Park, "Dual-band, unequal length branch-line coupler with
center-tapped stubs," IEEE Microw. Wireless Compon. Lett., vol. 19,
no. 10, pp. 617-619, Oct. 2009.
[21] H. Kim, B. Lee, and M.-J. Park, "Dual-band branch-line coupler
with port extensions," IEEE Trans. Microw. Theory Techn., vol. 58,
no. 3, pp. 651-655, Mar. 2010.
[22] C.-L. Hsu, "Dual-band branch line coupler with large power
division ratios," presented at the 2009 Asia Pacific Microwave
Conference (APMC2009), Singapore, Singapore, Dec. 7-10, 2009.
[23] K.-K. M. Cheng and S. Yeung, "A novel dual-band 3-dB
branch-line coupler design with controllable bandwidths," IEEE
Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3055-3061, Oct.
2012.
[24] T.-Y. Chen, P.-L. Chi, and T.-T. Lin, "Miniaturized branch-line
coupler with coupling-dependent dual-frequency operation," 2013
Asia Pacific Microwave Conference (APMC2013), Seoul, South
Korea, Nov. 5-8, 2013.
[25] I. A. Mocanu and T. Petrescu, "Novel dual band hybrid rat-race
coupler with CRLH and D-CRLH transmission lines," 2011 Asia
Pacific Microwwave Conference (AMPC2011), Melbourne, VIC,
USA, Dec. 5-8, 2011.
[26] E. Corrales, A. Baldomero, and P. Paco, "A dual-band 180-degree
hybrid coupler based on coupled-line sections," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 4, pp. 211-213, Feb. 2015.
[27] K.-S. Chin, K.-M. Lin, Y.-H. Wei, T.-H. Tseng, and Y.-J. Yang,
"Compact dual-band branch-line and rat-race couplers with
stepped-impedance-stub lines," IEEE Trans. Microw. Theory Techn.,
vol. 58, no. 5, pp. 1213-1221, May. 2010.
[28] P.-L. Chi and T.-Y. Chen, "Dual-band ring coupler based on the
composite right/left-handed folded substrate-integrated
waveguide," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 5,
pp. 330-332, May. 2014.
[29] K.-K. M. Cheng and F.-L. Wong, "A novel rat race coupler design
for dual-band applications," IEEE Microw. Wireless Compon. Lett.,
vol. 15, no. 8, pp. 521-523, Aug. 2005.
[30] J.-T. K. C.-L. Hsu, and C.-W. Chang, "Miniaturized dual-band
hybrid couplers with arbitrary power division ratios," IEEE Trans.
Microw. Theory Techn., vol. 57, no. 1, pp. 149-156, Jan. 2009.
[31] B. Arigong, J. Shao, M. Zhou, J. Ding, H. Kim, and H. Zhang, "A
novel dual-band rat-race couplers," 2014 IEEE Wireless and
Microwave Technology Conference (WAMICON), Tampa, FL, USA,
June 6, 2014.
[32] L. K. Yeung, "A compact dual-band 90° coupler with coupled-line
sections," IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp.
211-213, Sep. 2011.
[33] X. Wang, W.-Y. Yin, and K.-L. Wu, "A dual-band coupled-line
coupler with an arbitrary coupling coefficient," IEEE Trans. Microw. Theory Techn., vol. 60, no. 4, pp. 945-951, Apr. 2012.
[34] X. Wang, K.-L. Wu, and W.-Y. Yin, "A dual-band tandem coupler
with an arbitrary coupling coefficient," IEEE International
Microwave symposium (IMS), Montreal, Canada, June 17-22, 2012.
[35] K. Staszek, J. Sorocki, P. Kaminski, K. Wincza, and S.
Gruszczynski, "A broadband 3 dB tandem coupler utilizing
right/Left handed transmission line sections," IEEE Microw.
Wireless Compon. Lett., vol. 24, no. 4, pp. 236-238, Jan. 2014.
[36] W. Feng, T. Zhang, W. Che, and Q. Xue, "Compact
single-/dual-band planar crossovers based on strong coupled lines,"
IEEE Trans. Components, Packaging and Manufacturing
Technology, vol. 6, no. 6, pp. 854-863, May 2016.
[37] P.-L. Chi and C.-C. Li, "Novel dual-band quasi-0-dB coupled-line
coupler using the composite right/left-handed transmission lines,"
IEEE Trans. Components, Packaging and Manufacturing
Technology, vol. 4, no. 2, pp. 259-267, Feb. 2014.
[38] A. e. al., "High directivity multi-band coupled-line coupler for RF
power amplifier," United States Patent, Patent No.: US 6,759,922
B2,Jul. 6, 2004.
[39] M. A. Abdalla and Z. Hu, "Compact tunable single and dual mode
ferrite left-handed coplanar waveguide coupled line couplers," IET
Microw. Antennas Propag., vol. 3, no. 4, pp. 695-702, May 2009.
[40] Y. Wang, Y. Zhang, L. He, F. Liu, H. Li, and H. Chen, "Tunable
asymmetric composite right-/left-handed transmission line directional coupler controlled by applied voltage," in 2005 Asia
Pacific Microwave Conference (APMC2005), Suzhou, China, Dec.
4-7, 2005.
[41] S.-M. Sohn, A. Gopinaph, and J. T. Vaughan, "A compact, high
power capable, and tunable high directivity microstrip coupler,"
IEEE Trans. Microw. Theory Techn., vol. 64, no. 10, pp. 3217-3223,
Oct. 2016.
[42] C.-S. Kim, C.-S. Yoon, J.-S. Park, D. Ahn, J.-B. Lim, and S.-I.
Yang, "A design of the novel varactor tuned directional coupler,"
IEEE International Microwave symposium (IMS), Montreal,
Canada, June 13-19, 1999.
[43] C.-S. Kim, J.-S. Park, D. Ahn, and J.-B. Lim, "Variable directional
coupler with LC resonator," IEEE Electron. Lett., vol. 36, no. 18,
pp. 1557-1559, Aug. 2000.
[44] F. Ferrero, C. Luxey, R. Staraj, G. Jacquemod, and V. F. Fusco,
"Compact quasi-lumped hybrid coupler tunable over large
frequency band," IEEE Electron. Lett., vol. 43, no. 19, pp.
1030-1031, Spe. 2007.
[45] E. A. Fardin, K. Ghorbani, and A. S. Holland, "A varactor tuned
branch-line hybrid coupler," in 2005 Asia Pacific Microwave
Conference (APMC2005), Suzhou, China, Dec. 4-7, 2005.
[46] E. E. Djoumessi, E. Marsan, C. Caloz, M. Chaker, and K. Wu,
"Varactor-tuned dual-band quadrature hybrid coupler," IEEE
Microw. Wireless Compon. Lett., vol. 16, no. 11, pp. 603-605, Oct. 2006.
[47] M. Zhou, J. Shao, B. Arigong, H. Ren, R. Zhou, and H. Zhang, "A
varactor based 90 degree directional coupler with tunable coupling
ratios and reconfigurable responses," IEEE Trans. Microw. Theory
Techn., vol. 62, no. 3, pp. 416-421, Jan. 2014.
[48] J. Sun, C. Li, and Y. Geng, "A highly reconfigurable low-power
CMOS directional coupler," IEEE Trans. Microw. Theory Techn.,
vol. 60, no. 9, pp. 2815-2822, Sep. 2012.
[49] A. Ocera, P. Farinelli, P. Mezzanotte, R. Sorrentino, B. Margesin,
and F. Giacomozzi, "Novel RF-MEMS widely-reconfigurable
directional coupler," 2007 European Microwave Conference
(EuMC), Munich, Germany, Oct. 9-12, 2007.
[50] L. Marcaccioli, C. Lugo, M. M. Tentzeris, J. Papapolymerou, and R.
Sorrentino, "A novel reconfigurable coupler for intelligent SOP RF
front-ends," 2005 European Microwave Conference (EuMC), Paris,
France, Oct. 4-6, 2005.
[51] R. V. Gatti, A. O. S. Bastioli, L. Marcaccioli, and R. Sorrentino, "A
novel compact dual band reconfigurable power divider for smart
antenna systems," IEEE International Microwave symposium (IMS),
Honolulu, HI, USA, June 3-8, 2007.
[52] M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, "A compact
highly reconfigurable CMOS MMIC directional coupler," IEEE
Trans. Microw. Theory Techn., vol. 56, no. 2, pp. 305-319, Feb.
2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top