|
[1]D. E. Goldberg, Genetic algorithms in search, optimisation, and machine learning, Reading, MA: Addison-Welsey. (1989). [2]P. P. Shen, K.C. Zhang, Global optimization of signomial geometric programming using linear relaxation, Applied Mathematics and Computation 150: 99–114 (2004). [3]H. P. Schwefel, Numerical optuimization of computer models, New York: John Wieley &;Sons (1981). [4]S. Kirkpartick, C. D. Gelatt, M. P. Vechhi, Optimization by simulated annealing, Science 220:671–680 (1983). [5]K. Price, R. Storn, Differential evolution – A simple evolution strategy for fast optoimization, Dr. Dobb’s Journal, 22:18–24 (1997). [6]A. K. Qin, V. L. Huang, and P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput. , 13(2), pp. 398–417, Apr. (2009). [7]R. Storn, K. Price, Differential Evolution - A simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization 11:341–359 (1997). [8]J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, IV:1942 – 1948 (1995). [9]M. Dorigo, V. Maniezzo, A. Colorni, Ant System: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics Part B 26(1):29–41 (1996). [10]X. S. Yang, Deb, S. Engineering optimization by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation. 1(4), 330-343 (2010). [11]B. V. Babu, R. Angira, Modified differential evolution (MDE) for optimization of nonlinear chemical processes, Computer and Chemical Engineering 30:989–1002 (2006). [12]R. Angira, B. V. Babu, Optimization of process synthesis and design problems: A modified differential evolution approach, Chemical Engineering Science, 61: 4707–4721 (2006). [13]G. C. Onwubolu, B. V. Babu, New optimization techniques in engineering, Heidelberg, Germany: Springer-Verlag (2004). [14]J. P. Chiou, F. S. Wang, Hybrid method of evolutionary algorithms for static and dynamic optimization problems with appliation to a fed-batch fermentation processes, Computer and Chemical engineering 23(9):1277–1291 (1999). [15]S. S. Rao, Engineering Optimization: theory and practice 4th, Jonh Wiley and Sons, New York, (2009). [16]S. S. Rao, Engineering Optimization: theory and practice 3rd, Jonh Wiley and Sons, New York, (1996). [17]M. Ali, M. Pant, V. P. Singh, Two modified differential evolution algorithms and their applications to engineering design problems, World Journal of Modelling and Simulation 6(1):72–80 (2010). [18]M. J. Rijckaert, X. M. Martens, Comparison of generalized geometric programming algorithms, Journal of Optimization Theory and Application, 26: 205–241 (1978). [19]S. Qu, K. Zhang, F. Wang, A global optimization using linear relaxation for generalized geometric programming, European Journal of Operational Research, 190: 345–356 (2008). [20]T. P. Runarsson, X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Transactions on Evolutionary Computation, 4: 284–294(2000). [21]T. Jayabarathi, S. Chalasani, Z. A. Shaik, N. D. Kodali, Hybrid differential evolution and particle swarm optimization based solutions to short term hydro thermal scheduling, WSEAS Transactions on Power Systems, 2:245–254 (2007). [22]M. Pant, R.Thangaraj, C. Grosan, A. Abraham, Hybrid differential evolution V particle swarm optimization algorithm for solving global optimization problems, Third International Conference on Digital Information Management (ICDIM 2008) 18V24 (2008). [23]C. Zhang, J. Ning, S. Lu, D. Ouyang, T. Ding, A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization, Operations Research Letters, 37(2): 117–122 (2009). [24]A. K. Qin, P. N. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, Evolution Computation, 2 , 1785-1791 (2005). [25]H. L. Shieh, C. C. Kuo, C. M. Chiang, Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification, Applied Mathematics and Computation 218, 4365-4383 (2011). [26]H. S. Ryoo, N. V. Sabinidis, Gloabal optimization of nonconvex NLPs and MINLPs with applications in process design, Computer and Chemical Engineering, 19(5), 551-566 (1995). [27]R. M. Soland, An algorithm for separable nonconvex programming problems II: nonconvex constraints. Mgmt Sci. 17, 759-773 (1971). [28] C. A. Floudas, P. M. A. Pardalos, Collection of test problems for constrained global optimization algorithms. Lecture notes in computer science, 455. Berlin, Germany: Springer (1990). [29]C. S. Adjiman, C. S. Dallwig, C. A. Floudas, A. A. Neumaier, Global optimization method, BB, for general twice differentiable constrained NLPs. I. Theoretical advances. Computers and Chemical Engineering, 22(9), 1137–1158. (1998). [30]H. S. Ryoo, N. V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Computers and Chemical Engineering, 19(5), 551–566 (1995). [31]J. Bracken, G. P. McCormic, Selected applications of nonlinear programming, New York: John Wiley &; Sons, Inc. (1968). [32] G. Stephanopoulos, A. W. Westerberg, The usc of Hestenes' method of multipliers to resolve dual gaps in engineering system optimization, 1. Optim. Theory Applic. IS, 285–309 (1975). [33]G. R. Kocis, I. E. Grossmann, A modeling and decomposition strategy for the MINLP optimization of process flowsheets, Computers and Chemical Engineering 13, 797–819 (1989). [34]C. A. Floudas, Nonlinear and mixed-integer optimization, Oxford University Press, New York (1995). [35]C. A. Floudas, A. Aggarwal, A. R. Ciric, Global optimum search for nonconvex NLP and MINLP problems. Computers and Chemical Engineering 13, 1117–1132 (1989). [36]劉惟信,機械最佳化設計,全華科技圖書股份有限公司,台北,(1996).
|