跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 04:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴明裕
研究生(外文):Ming Yu Lai
論文名稱:微分演化演算法之改良與化工應用
論文名稱(外文):An improvement of differential evolution algorithm and applications in chemical engineering
指導教授:孫殿元
指導教授(外文):Daim-Yuang Sun
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:176
中文關鍵詞:最適化微分演化演算法局部解穩健性
外文關鍵詞:OptimizationDifferential Evolutionary AlgorithmLocal Solutionsrobust
相關次數:
  • 被引用被引用:0
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
微分演化演算技術是一種有效且具強健性找尋全域最適解的方法。本法近年來雖已有不少成功的應用案例,但收斂速度不佳,收斂過於耗時,一直是其主要缺點。針對此一缺失,本研究嘗試以Babu與Angria所提出的改良式微分演化演算法為骨幹,藉由排除一定數量較差之標的向量,取代以同數量,以當下最佳標的向量周圍區域,所新生成之新標的向量。以進一步強化當下最佳值附近的搜尋,藉此提升整體收斂速度。透過求解數個標準測試樣板問題的結果得知:此局部取代策略確可大幅降低目標函數呼叫的次數,有效提昇收斂效率。由於,在100次利用不同起始向量的運算中,仍能保有高成功率。證明結合局部取代策略的改良式微分演化法依然保有不錯的強健性。此外,本研究也利用此改良後之微分演算法,求解化學工程中之程序設計與整合的最佳化問題。測試結果顯示:改良後之方法,不僅可快速收斂,強健性佳之外,在不同精確度要求下,仍可維持極佳的數值品質。

Differential evolution (DE) algorithm is a very effective and robust global optimizer. Even there are any successful applications proposed in the past several years, however, the basic DE like other meta-heuristics also encounters the difficulty of too slow convergence. Based on the modified differential evolution proposed by Babu and Angria, we suggest in this study replacing a proportion of worse target vectors by the same numbers of new ones randomly generated from the neighborhood of the current best target vector. The improvement is named as local replacement policy.By testing a lot of benchmark problems, the resuts show that such improvement may largely reduce the numbers of function evaluation.After 100 tests with different initial guesses, the high successful rate also justifies the modified DE with local replacement strategy still keeps the robustness.
We also apply the proposed method to optimize the process design and synthesis problems in chemical engineering. The results show that besides having very nice convergent rate, the proposed method may acquire the solutions with very nice numerical accuacy.

第一章 緒論 1
1.1. 研究動機 1
1.2. 文獻回顧 2
1.3. 章節配置 6
第二章 介紹 7
2.1. 基本微分演化演算法 7
2.1.1. 基本DE演算流程 12
2.2. 改良式微分演化演算法 14
2.2.1. MDE演算流程 16
2.3. 改良對策 17
2.3.1. 基本DE整合局部取代後之演算流程 19
2.3.2. MDE整合局部取代後之演算流程 22
第三章 效能評估 25
3.1. 無約束條件最適問題之測試及評估 27
3.1.1. 演算法結果探討 27
第四章 程序整合與設計問題 95
4.1. 各類具約束條件之最適化問題分類 96
4.2. 具(不)等式約束條件之非線性最適化問題 98
4.2.1. 具(不)等式約束條件最適化問題之求解 102
4.3. 具整數之非線性最適化問題 136
4.3.1. 整數規劃問題之結果探討 137
第五章 結論 169
參考文獻 171


[1]D. E. Goldberg, Genetic algorithms in search, optimisation, and machine learning, Reading, MA: Addison-Welsey. (1989).
[2]P. P. Shen, K.C. Zhang, Global optimization of signomial geometric programming using linear relaxation, Applied Mathematics and Computation 150: 99–114 (2004).
[3]H. P. Schwefel, Numerical optuimization of computer models, New York: John Wieley &;Sons (1981).
[4]S. Kirkpartick, C. D. Gelatt, M. P. Vechhi, Optimization by simulated annealing, Science 220:671–680 (1983).
[5]K. Price, R. Storn, Differential evolution – A simple evolution strategy for fast optoimization, Dr. Dobb’s Journal, 22:18–24 (1997).
[6]A. K. Qin, V. L. Huang, and P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput. , 13(2), pp. 398–417, Apr. (2009).
[7]R. Storn, K. Price, Differential Evolution - A simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization 11:341–359 (1997).
[8]J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, IV:1942 – 1948 (1995).
[9]M. Dorigo, V. Maniezzo, A. Colorni, Ant System: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics Part B 26(1):29–41 (1996).
[10]X. S. Yang, Deb, S. Engineering optimization by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation. 1(4), 330-343 (2010).
[11]B. V. Babu, R. Angira, Modified differential evolution (MDE) for optimization of nonlinear chemical processes, Computer and Chemical Engineering 30:989–1002 (2006).
[12]R. Angira, B. V. Babu, Optimization of process synthesis and design problems: A modified differential evolution approach, Chemical Engineering Science, 61: 4707–4721 (2006).
[13]G. C. Onwubolu, B. V. Babu, New optimization techniques in engineering, Heidelberg, Germany: Springer-Verlag (2004).
[14]J. P. Chiou, F. S. Wang, Hybrid method of evolutionary algorithms for static and dynamic optimization problems with appliation to a fed-batch fermentation processes, Computer and Chemical engineering 23(9):1277–1291 (1999).
[15]S. S. Rao, Engineering Optimization: theory and practice 4th, Jonh Wiley and Sons, New York, (2009).
[16]S. S. Rao, Engineering Optimization: theory and practice 3rd, Jonh Wiley and Sons, New York, (1996).
[17]M. Ali, M. Pant, V. P. Singh, Two modified differential evolution algorithms and their applications to engineering design problems, World Journal of Modelling and Simulation 6(1):72–80 (2010).
[18]M. J. Rijckaert, X. M. Martens, Comparison of generalized geometric programming algorithms, Journal of Optimization Theory and Application, 26: 205–241 (1978).
[19]S. Qu, K. Zhang, F. Wang, A global optimization using linear relaxation for generalized geometric programming, European Journal of Operational Research, 190: 345–356 (2008).
[20]T. P. Runarsson, X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Transactions on Evolutionary Computation, 4: 284–294(2000).
[21]T. Jayabarathi, S. Chalasani, Z. A. Shaik, N. D. Kodali, Hybrid differential evolution and particle swarm optimization based solutions to short term hydro thermal scheduling, WSEAS Transactions on Power Systems, 2:245–254 (2007).
[22]M. Pant, R.Thangaraj, C. Grosan, A. Abraham, Hybrid differential evolution V particle swarm optimization algorithm for solving global optimization problems, Third International Conference on Digital Information Management (ICDIM 2008) 18V24 (2008).
[23]C. Zhang, J. Ning, S. Lu, D. Ouyang, T. Ding, A novel hybrid
differential evolution and particle swarm optimization algorithm
for unconstrained optimization, Operations Research Letters, 37(2):
117–122 (2009).
[24]A. K. Qin, P. N. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, Evolution Computation, 2 , 1785-1791 (2005).
[25]H. L. Shieh, C. C. Kuo, C. M. Chiang, Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification, Applied Mathematics and Computation 218, 4365-4383 (2011).
[26]H. S. Ryoo, N. V. Sabinidis, Gloabal optimization of nonconvex NLPs and MINLPs with applications in process design, Computer and Chemical Engineering, 19(5), 551-566 (1995).
[27]R. M. Soland, An algorithm for separable nonconvex programming problems II: nonconvex constraints. Mgmt Sci. 17, 759-773 (1971).
[28] C. A. Floudas, P. M. A. Pardalos, Collection of test problems for constrained global optimization algorithms. Lecture notes in computer science, 455. Berlin, Germany: Springer (1990).
[29]C. S. Adjiman, C. S. Dallwig, C. A. Floudas, A. A. Neumaier, Global optimization method, BB, for general twice differentiable constrained NLPs. I. Theoretical advances. Computers and Chemical Engineering, 22(9), 1137–1158. (1998).
[30]H. S. Ryoo, N. V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Computers and Chemical Engineering, 19(5), 551–566 (1995).
[31]J. Bracken, G. P. McCormic, Selected applications of nonlinear programming, New York: John Wiley &; Sons, Inc. (1968).
[32] G. Stephanopoulos, A. W. Westerberg, The usc of Hestenes' method of multipliers to resolve dual gaps in engineering system optimization, 1. Optim. Theory Applic. IS, 285–309 (1975).
[33]G. R. Kocis, I. E. Grossmann, A modeling and decomposition strategy for the MINLP optimization of process flowsheets, Computers and Chemical Engineering 13, 797–819 (1989).
[34]C. A. Floudas, Nonlinear and mixed-integer optimization, Oxford University Press, New York (1995).
[35]C. A. Floudas, A. Aggarwal, A. R. Ciric, Global optimum search for nonconvex NLP and MINLP problems. Computers and Chemical Engineering 13, 1117–1132 (1989).
[36]劉惟信,機械最佳化設計,全華科技圖書股份有限公司,台北,(1996).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top