跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王珽玉
研究生(外文):Teng-Yu Wang
論文名稱:矽晶切割廢泥的回收與多晶矽生長在太陽光電之應用研究
論文名稱(外文):Recycling of solar grade silicon from kerf-loss slurry and multi-crystalline growth for photovoltaic application
指導教授:藍崇文藍崇文引用關係
指導教授(外文):Chung-Wen Lan
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:174
中文關鍵詞:矽泥回收晶向控制太陽能電池多晶矽
外文關鍵詞:slurry recyclegrain controlsolar cellmulti-crystalline silicon
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1811
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
矽晶型太陽能電池占整個太陽能電池市場的90%以上,而太陽能級矽原料主要來源於西門子法製程(Siemens process),然而近幾年太陽能產業的迅速發展,導致原物矽突然間的大量缺乏,因而衝擊到太陽能產業的發展。為了產業的正面發展與降低太陽能發電成本,低成本的原物料以及耗損物料的回收,或是高效能太陽能電池的生產,將扮演重要的角色。
以西門子法製程生產太陽能級矽原料,成本約在40 $/kg左右,而矽晶棒在晶片切割步驟時,大約有40%的矽損失(kerf loss),這些矽都以污泥的方式被丟棄或是經過回收碳化矽粒子之後丟棄,在矽成本如此高之下,將切割矽泥丟棄而不設法回收是非常可惜的。過去未能回收切割矽泥中的矽,主要原因是因為碳化矽與矽的分離十分困難。本論文中針對攙硼之太陽能單晶矽切割時所產生之矽污泥進行矽原料之分離提純,吾人發展出一個新的製程方法—高溫熱處理,可以解決過去碳化矽與矽分離困難的問題,成功的將矽由切割矽泥中分離出來,並提純至接近太陽能級矽原料的規格標準。研究中使用回收矽生長出來的多晶矽,雜質總含量低於5 ppmw,電阻率(0.5~1.6 Ω-cm)可控制在市售晶片標準範圍內(0.5~10 Ω-cm),平均載子壽命超過1 μs已達到太陽能電池製作所需的規格要求。晶體經過切片製作成太陽能電池後光電轉換效率最高可達12.6%,接近吾人使用乾淨矽原料來製作的太陽能電池效率(13.2%),證實切割矽泥回收再利用的構想是可行的。本研究的矽泥回收程序的矽總回收率可達20 %,估計成本約32 $/kg,不過目前仍有磷汙染的問題尚待解決,假使未來可以將切割矽泥生產端的磷汙染源排除,矽泥回收程序的總回收率將可提升到40%,且矽泥回收的成本可以降低到16 $/kg,相較起西門子法的製造成本來說,深具發展的潛力。
對於多晶矽太陽能電池之應用,由於晶界對於太陽能電池的能量轉換效率有一定的影響,因此過去有文獻報導利用改變降溫速度或坩堝下降速度,來得到具有Σ3鈍性晶界之多晶矽,來降低多晶晶界對太陽能轉換效率的影響,然而這些方法由於受限於生長設備的尺寸,目前只成功運用在3吋以下的小型生長系統上。本論文首次發展出cooling spot技術,來進行多晶矽生長時之晶向控制。利用cooling spot晶向控制生長所得到之多晶矽,晶體底部的晶粒晶向可以受到控制,晶體底部不但晶粒大小可以增加之外,載子壽命也有明顯的提升。此外將cooling spot配合上坩堝速度的控制,更可以大幅度增加生長晶體的品質,晶體底部的載子壽命可由原先未控制的0.41 μs,在生長控制後增加到1.08 μs,製作成太陽能電池後的量子效率更是可以大幅度增加。本研究將cooling spot實際運用在大型多晶生長設備上,初步實驗證實可得到與小型實驗相同的趨勢,生長出來的晶體底部平均晶粒大小可由1.25 cm增加到1.75 cm,載子壽命也可從0.44 μs增加到0.63 μs。
Solar photovoltaic (PV) energy will shortly be in great demand, since it is inexhaustible and cleaner than any conventional energy resources. The global PV production was over 2.6 GW in 2006 alone, out of which, the majority was the silicon wafer-based solar cells. Because the fast growing PV market is mainly based on crystalline silicon, the lack of silicon raw materials in recent years is becoming a critical issue. The exponential growth of the solar cell industry has driven up the price of silicon several times and the shortage of silicon has been a serious issue since 2003.
So far, most of solar grade silicon (SoG-Si) is from the Siemens process, which is energy intensive and high cost. Therefore, cheaper routes for producing SoG-Si are being developed in the PV industries, but the progress in slow. The price of raw silicon has increased almost ten times for the past five years. Therefore, seeking a feasible and low-cost route for producing SoG-Si is important for the PV industry. On the other hand, because there is about 40% kerf silicon loss during slicing processing, the recycle of the silicon from the cutting slurry could save the raw material used significantly. However, the attempt has not yet been succeeded so far. In this thesis, we developed a novel approach to recover SoG-Si from the Si/SiC mixture obtained from the cutting slurry waste. Herein a detailed discussion of the processes involved in the whole recycle research is reported. The average resistivity and minority carrier lifetime of the grown crystals from recycled silicon were found to be about 0.7 Ω-cm and 1.02 μs, respectively, which were close to the original sawing silicon ingots. Solar cells using multi-crystalline wafers of recovered silicon were fabricated and the best energy conversion efficiency (12.6%) was comparable to the ones from the high-purity silicon (13.2%). The yield of recycle process is about 20% and the cost (32 $/kg) is much lower than the right now price of solar grade silicon.
Multi-crystalline silicon (mc-Si) grown by the directional solidification method has attracted world wide attention as a solar cell material because of its low production cost and high throughput. However, the efficiency of mc-Si solar cells is usually lower than single-crystalline silicon solar cells because of the presence of variety of defects such as randomly oriented grain boundaries, dislocations, inclusions and oxides, in large concentration. These defects act as recombination center for light generated electrons and holes and therefore are harmful for the solar cell performance. Recently, grain boundaries have been shown to have different characteristics under different orientations. For example, the Σ3 boundary is a well-known inactive boundary as it does not act as recombination center. Therefore, in order to improve the efficiency of mc-Si based solar cells, efforts have been directed towards growth of mc-Si with highly oriented grains. In fact, controlling the cooling speed during initial stage of solidification induces dendrite growth along the crucible bottom wall which is responsible for growth of large grains with Σ3 grain boundary.
In this thesis, we report a novel method to control the grain orientation by using cooling spots at the bottom of the crucible. The cooling spots induce locally larger radial thermal gradients to enhance dendritic growth, but not limited to the size of the crucible. Studies have been carried out for laboratory scale, and some preliminary results have been obtained from an industrial scale experiment. The minority carrier lifetime measurements and electron back scattering pattern analysis in the grown crystals have been carried out to assess the effect of using cooling spot.
中文摘要………………………………………………………….……………………I
英文摘要……………………………………………………………………………III
目錄…………………………………………………………………………...………V
圖目錄…………………………………………………………………………...…VIII
表目錄………………………………………………………………………………….XI

第一章 緒論………. ………………………………………………………………1
1.1 簡介………………………………………………………………………1
1.2 文獻回顧…………………………………………………………………3
1.2.1 矽的性質……………………………………………………………….3
1.2.2 原料精煉….……………………………………………………………5
1.2.2.1 冶金級矽原料製作方法….…..…………………………………6
1.2.2.2 電子級矽原料製作方法………………………………………...7
1.2.2.3 太陽能級矽原料製作方法……………………………………9
1.2.3 由MGS提純SGS之程序…. ………………………………………11
1.2.4 切割矽泥之回收技術………………………………………………...17
1.2.5 晶體生長……………………………………………………………22
1.2.5.1 多晶矽生長方法……………………………………………….22
1.2.5.2 坩堝種類對矽晶生長之影響…………………………………24
1.2.5.3 多晶生長之晶向控制方法…………………………………….26
1.2.6 太陽能電池介紹……………………………………………………...29
1.2.6.1 太陽能電池製作方法………………………………………….31
1.2.6.2 表面結構化技術……………………………………………….33
1.2.6.3 表面鈍化技術………………………………………………….37
1.3 研究動機…………………………………………………………………….39

第二章 實驗器材與步驟…………………………………………………………….41
2.1 實驗藥品…………………………………………………………………….41
2.1.1 矽泥回收程序使用藥品……………………………………………41
2.1.2 晶體生長使用藥品…………………………………………………..42
2.1.3 太陽能電池製作使用藥品…………………………………………43
2.2 器材設備…………………………………………………………………….48
2.2.1 矽泥回收程序設備…………………………………………………48
2.2.2 多晶生長設備………………………………………………………..48
2.2.3 晶體後處理設備……………………………………………………..53
2.2.4 太陽能電池製作設備………………………………………………..54
2.2.5 量測設備……………………………………………………………..58
2.3 實驗流程…………………………………………………………………….71
2.3.1 矽泥回收程序………………………………………………………..71
2.3.2 晶體生長程序………………………………………………………..73
2.3.3 晶體後處理…………………………………………………………..74
2.3.4 太陽能電池製作……………………………………………………..75

第三章 單向長晶爐設計與安裝測試………………………………………………77
3.1 長晶爐設計………………………………………………………………….77
3.1.1 石英坩堝保護層塗佈………………………………………………77
3.1.2 保溫材之選擇………………………………………………………..79
3.1.3 加熱器之選擇………………………………………………………..80
3.1.4 氧分壓之控制………………………………………………………..82
3.2 多晶矽之生長……………………………………………………………….85
3.2.1 摻雜…………………………………………………………………..86
3.2.2 生長參數之控制及記錄……………………………………………88
3.3 掺硼多晶矽之晶體評價……………………………………………………91
3.3.1 晶體雜質分析………………………………………………………..91
3.3.2 電阻率分析…………………………………………………………..92
3.3.3 碳氧分析……………………………………………………………..93
3.3.4 少數載子壽命分析…………………………………………………..94
3.3.5 太陽能電池性能量測………………………………………………..95
3.4 結果與討論………………………………………………………………100

第四章 矽泥回收…………………………………………………………………101
4.1 原始矽泥成分分析………………………………………………………102
4.2 離心前處理………………………………………………………………...107
4.2.1 化學前處理…………………………………………………………107
4.2.2 重液分離……………………………………………………………108
4.2.3 重液分離後之雜質分析……………………………………………113
4.3 高溫熱處理………………………………………………………………115
4.3.1 高溫熱處理溫度之影響……………………………………………117
4.3.2 高溫熱處理時間之影響……………………………………………118
4.3.3 高溫熱處理後之雜質分析…………………………………………124
4.4 單向凝固生長……………………………………………………………...126
4.5 晶體評價…………………………………………………………………...127
4.5.1 雜質含量分析………………………………………………………127
4.5.2 電阻率分析…………………………………………………………131
4.5.3 碳氧分析……………………………………………………………132
4.5.4 少數載子壽命分析…………………………………………………133
4.5.5 太陽能電池性能量測………………………………………………135
4.6 回收成本評估……………………………………………………………...139
4.7 結果與討論………………………………………………………………143

第五章 多晶矽生長之晶向控制…….. ……………………………………………144
5.1 晶向控制方法……………………………………………………………...144
5.1.1 Cooling Spot控制…………………………………………………...144
5.1.2 生長速度控制………………………………………………………146
5.2 晶體評價…………………………………………………………………...148
5.2.1 電阻率分析…………………………………………………………148
5.2.2 碳氧分析……………………………………………………………149
5.2.3 少數載子壽命及晶向分析…………………………………………149
5.2.4 量子效率分析………………………………………………………152
5.3 結果與討論………………………………………………………………...154

第六章 結論………………………………………………………………………...156

參考文獻……………………………………………………………………………...158

附錄…………………………………………………………………………………176
Abbott M. and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells”, Progress in Photovoltaics: Research and Applications, 14 (2006) pp. 225-235.

Agostineli G., P. Vitanov, Z. Alexieva, A. Harizonva, H. F. Dekkers, S. D. Wolf, and G. Beaucarne, “Surface passivation of silicon by means of negative charge dielectrics”, Proceeding of 19th European Photovoltaic Solar Energy Conference, June 7-11 (2004), Paris, France.

Agostinelli G., A. Delabie, P. Vitanov, Z. Alezieva, H. F. W. Dekkers, S. D. Wolf, and G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge”, Solar Energy Materials & Solar Cells, 90 (2006) pp. 3438-3443.

Alemany C., C. Trassy, B. Pateyron, K. I. Li, and Y. Delannoy, “Refining of metallurgical-grade silicon by inductive plasma”, Solar Energy Materials & Solar Cells, 72 (2002) pp. 41-48.

Aoyama T. and K. Kuribayashi, ”Influence of undercooling on solid/liquid interface morphology in semiconductors”, Acta materialia, 48 (2000) pp. 3739-3744.

Arafune K., E. Ohishi, F. Kusuoka, H. Kawai, H. Sai, Y. Ohshita, and M. Yamaguchi, “Growth and characterization of multicrystalline silicon ingots grown by directional solidification technique”, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, May 7-12, Waikoloa, Hawaii, USA, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4 (2007) pp.1074-1077.

Arafune K., E. Ohishi, H. Sai, Y. Terada, Y. Ohshita, and M. Yamaguchi, “Study on iron distribution and electrical activities at grain boundaries in polycrystalline silicon substrate for solar cells”, Japanese Journal of Applied Physics, 45 (2007) pp.6153-6156.

Arafune K., H. Kawai, K. Fukuda, Y. Terada, Y. Ohshita, and M. Yamaguchi, “Inhomogeneous distribution of transition metals in as-grown and annealed polycrystalline silicon substrates”, The 4th Asian Conference of Crystal Growth and Crystal Technology CGCT-4, 21-24 May (2008), Sendai, Japan.

Aulich H. and F. W. Schulze, “Method for separation of solid reaction products from silicon produced in an arc furnace”, Unite State Patent 4,643,833 (1987).

Baba H., M. Abe, K. Hanazawa, N. Nakamura, N. Yuge, Y. Sakaguchi, Y. Kato, and T. Fujii, “Method for producing silicon for use in solar cells”, Unite State Patent 6,090,361 (2000).

Bartlett R. W., “Molybdenum oxidation kinetics at high temperatures”, Journal of the electrochemical society, 112 (1965) pp. 744-746.

Bastide S., C. Charti, C. Vard, and C. L. Clément, “Multicrystalline Si texturization by metal-assisted chemical etching for solar cell application”, 22nd European Photovoltaic Solar Energy Conference, September 3-7 (2007), Milan, Italy, pp. 1278-1281.

Billiet R. L. and H. T. Nguyen, “Photovoltaic cells from silicon kerf”, Unite State Patent 6,780,665 B2 (2004).

Bilyalov R. R., R. Lüdemann, W. Wettling, L. Stalmans, J. Poormans, J. Nijs, L. Schirone, G. Sotgiu, S. Strehlke, and C. L. Clément, “Multicrystalline silicon solar cells with porous silicon emitter”, Solar Energy Materials & Solar Cells, 60 (2000) pp. 391-420.

Brandon D. G., “The structure of high-angle grain boundaries”, Acta Metallurgica, 14 (1966) pp. 1479-1484.

Braga A. F. B., S. P. Moreira, P. R. Zampieri, J. M. G. Bacchin, and P. R. Mei, “New processes for the production of solar-grade polycrystalline silicon: A review”, Solar Energy Materials & Solar Cells, 92 (2008) pp. 418-424.

Brosnan J. and B. Snow, “Recovery of silicon metal from dross”, Published Report 194 (1998), The Minerals and Energy Research Institute of Western Australia.

Buonassisi T., A. A. Istratov, M. D. Pickett, J. P. Rakotoniaina, O. Breitenstein, M. A. Marcus, S. M. Heald, and E. R. Weber, “Transition metals in photovoltaic grade ingot cast multicrystalline silicon : assessing the role of impurities in silicon nitride crucible lining material”, Journal of Crystal Growth, 287 (2006) pp. 402-407.

Buonassisi T., N. D. Pickett, A. A. Istratov, E. Sauar, T. C. Lommasson, E. Marstein, T. Pernau, R. F. Clark, S. Narayanan, S. M. Heald, and E. R. Weber, “Interactions between metals and different grain boundary types and their impact on multicrystalline silicon device performance”, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, May 7-12, Waikoloa, Hawaii, USA, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4 (2007) pp.944-947.

Charti C., S. Bastide, and C. L. Clément, “Metal-assisted wet chemical etching of crystalline silicon”, 22nd European Photovoltaic Solar Energy Conference, September 3-7 (2007), Milan, Italy, pp. 1231-1234.

Chen B., J. Chen, and T. Sekiguchi, “Effect of boundary plane on the recombination activities of Σ3 boundaries in multicrystalline silicon”, The 4th Asian Conference of Crystal Growth and Crystal Technology CGCT-4, 21-24 May (2008), Sendai, Japan.

Chen J., D. Yang, Z. Xi, and T. Sekiguchi, “Recombination activity of Σ3 boundaries in boron-doped multicrystalline silicon: influence of iron contamination”, Journal of Applied Physics, 97 (2005) pp. 033701.

Chen J., T. Sekiguchi, R. Xie, P. Ahmet, T. Chikyo, D. Yang, S. Ito, and F. Yin, “Electro-bean-induced current study of small-angle grain boundaries in multicrystalline silicon”, Scripta Materialia, 52 (2005) pp. 1211-1215.

Chiou B. S. and J. H. Tasi, “Antireflective coating for ITO films deposited on glass substrate”, Journal of Materials Science: Materials in Electronics, 10 (1999) pp. 491-495.

Ciszek T. F., G. H. Schwuttke, and K. H. Yang, “Directionally solidified solar-grade silicon using carbon crucibles”, Journal of Crystal Growth, 46 (1979) pp. 527-533.

Ciszek T. F. and G. H. Schwuttke, “Method for directional solidification of silicon”, Unite State Patent 4,243,471 (1981).

Ciszek T. F. and T. Wang, “Crystallization from high temperature solutions of Si in Cu/Al solvent”, Unite State Patent 5,544,616 (1996).

Ciszek T. F., T. H. Wang, M. R. Page, P. Menna, R. E. Bauer, E. A. Good, and M. D. Landry, “Alternative solar-grade silicon feedstock approaches”, NCPV Program Review Meeting, Lakewood, Colorado, US, 14-17 October (2001).

Costantini M. A., M. Chandra, K. Matthei, and A. V. Hariharan, “Release coating system for crucible”, Unite State Patent 6,491,971 B2 (2002).

Cowan C. T., S. K. M. Smith, D.A. Cowan, F. Sweeney, D. McColl, A. Mohammed, R. Timm, P.G. Middleton, K.P. O’Donnell, D. Zubia, S.D. Hersee, “Characterisation of nitride thin films by electron backscattered diffraction”, Materials Science & Engineering B, 82 (2001) pp. 19-21.

Dahoudi N. A. and M. A. Aegerter, “Wet coating deposition of ITO coating on plastic substrates”, Journal of Sol-Gel Science and Technology, 26 (2003) pp. 693-697.

Dauwe S., L. Mittelstadt, A. Metz, and R. Hezel, “Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells”, Progress in Photovoltaics: Research and Applications, 10 (2002) pp. 271-278.

Davis J. R., A. Rohatgi, R. H. Hopkins, P. D. Blais, P. R. Choudhury, J. R. Mccormick, and H. C. Mollenkopf, “Impurities in silicon solar cells”, IEEE Transactions of Electron Devices, 27 (1980) pp. 677-687.

Dean J.A., Lange''s Handbook of Chemistry (15th Edition), McGraw-Hill, (1999).

Dekkers H. F., S. D. Wolf, G. Agostinelli, F. Duerinckx, and G. Beaucarne, “Requirements of PECVD SiNx:H layers for bulk passivation of mc-Si”, Solar Energy Materials & Solar Cells, 90 (2006) pp. 3244-3250.

Delannoy Y., C. Alemany, K. I. Li, P. Proulx, and C. Trassy, “Plasma-refining process to provide solar-grade silicon”, Solar Energy Materials & Solar Cells, 72 (2002) pp. 69-75.

Dhere N. D., “Toward GW/year of CIGS production within the next decade”, Solar Energy Materials & Solar Cells, 91 (2007) pp. 1376-1382.

Dietl J. and M. Wohlschlager, “Process for purifying metallurgical grade silicon”, Unite State Patent 4,304,763 (1981).

Dietl J. and C. Holm, “Method of purifying metallurgical-grade silicon”, Unite State Patent 4,308,245 (1981).

Dietl J., C. Holm, and E. Sirtl, “Semicontinuous process for the manufacture of pure silicon”, Unite State Patent 4,312,850 (1982).

Dietl J. and J. Korilge, “Progress for the removal of the slag portion from molten mixtures of slag and silicon using a semipermeable separating wall”, Unite State Patent 4,515,600 (1985).

Dosaj V. D. and L. P. Hunt, “Method for producing solar cell grade silicon”, Unite States Patent 4,247,528 (1981).

Dubey V. and S. Singh, “Formation of oxygen related donors in step-annealed CZ silicon”, Bulletin of Materials Science, 25 (2002) pp. 589-592.

Einhaus R., E. Vazsonyi, J. Szlufcik, J. Nijs, and R. Mertens, “Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions”, Proceeding of the 26th IEEE PVSC conference, September 30- October 3 (1997), Anaheim, CA, pp. 167-170.

Endrös A. and G. Martinelli, “Silicon semiconductor wafer solar cell and process for producing said wafer”, Unite State Patent 5,702,538 (1997).

Endrös A. L., “Mono- and tri-crystalline Si for PV application”, Solar Energy Materials & Solar Cells, 72 (2002) pp. 109-124.

Flynn H., M. Meyers, and M. Rogol, “The price is right”, Photon International, April (2008), pp. 78-82.

Franke D., T. Rettelbach, C. Häßler, W. Koch, and A. Muller, “Silicon ingot casting: process development by numerical simulations”, Solar Energy Materials & Solar Cells, 72 (2002) pp. 83-92.

French C. S., D. P. Belman, D. E. Kardes, and R. W. Hendricks, “Determination of junction depths for phosphorous diffused in silicon”, 14th Biennial University/Government/Industry Microelectronics Symposium, Jun 17-21 (2001), Richmond, VA, pp. 51-59.

Fujiwara K., K. Maeda, N. Usami, G. Sazaki, Y. Nose, and K. Nakajima, “Formation mechanism of parallel twins related to Si-facetted dendrite growth”, Scripa Materialia, 57 (2007) pp. 81-84.

Fujiwara K., K. Maeda, N. Usami, G. Sazaki, Y. Nose, A. Nomura, T. Shishido, and K. Nakajima, “In situ observation of Si faceted dendrite growth from low-degree-of-undercooling melts”, Acta Materialia, 56 (2008) pp. 2663-2668.

Fujiwara K., K. Nakajima, T. Ujihara, N. Usami, G. Sazaki, H. Hasegawa, S. Mizoguchi, and K. Nakajima, “In situ observations of crystal growth behavior of silicon melt”, Journal of Crystal Growth, 243 (2002) pp. 275-282.

Fujiwara K., Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, and K. Nakajima, “In-situ observations of melt growth behavior of polycrystalline silicon”, Journal of Crystal Growth, 262 (2004) pp. 124-129.

Fujiwara K., Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, and K. Nakajima, “Grain growth behaviors of polycrystalline silicon during melt growth processes”, Journal of Crystal Growth, 266 (2004) pp. 441-448.

Fujiwara K., W. Pan, K. Sawada, M. Tokairin, N. Usami, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, “Directional growth method to obtain high quality polycrystalline silicon from its melt”, Journal of Crystal Growth, 292 (2006) pp. 282-285.

Fujiwara K., W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, A. Nomura, T. Shishido, and K. Nakajima, “Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting”, Acta Materialia, 54 (2006) pp. 3191-3197.

Gangopadhyay U., S. K. Dhungel, K. Kim, U. Manna, P. K. Basu, H. J. Kim, B. Karunagaran, K. S. Lee, J. S. Yoo, and J. Yi, “Novel low cost chemical texturing for very large area industrial multi-crystalline silicon solar cells”, Semiconductor Science and Technology, 20 (2005) pp. 938-946.

Gangopadhyay U., S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication”, Solar Energy Materials & Solar Cells, 91 (2007) pp. 285-289.

Good E. A., T. H. Wang, T. F. Ciszek, R. H. Frost, M. R. Page, and M. D. Landry, “Partitioning effects in recrystallization of silicon from silicon-metal solutions”, 12th Workshop on Crystalline Silicon Solar Cell Materials and Processes, August (2002) pp. 231-234.

Global Renewable Energy, “Solar PB industry”, June 2001.

Green M. A., K. Emery, Y. Hisikawa, and W. Warta, “Solar cell efficiency tables (version 30)”, Progress in Photovoltaics : Research and Applications, 15 (2007) pp. 425.

Grenko A., R. Jonczyk, and J. Rand, “Single Wafer Casting”, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, May 7-12, Waikoloa, Hawaii, USA, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4 (2007) pp. 1415-1416.

Gribov B. G. and K. V. Zinov’ev, “Preparation of high-purity silicon for solar cells”, Inorganic Materials, 39 (2003) pp. 653-662.

Gruenbaum P. E., J. Y. Gan, R. R. King, and R. M. Swanson, “Stable passivations for high-efficiency silicon solar cells”, Proceedings of 21st IEEE Photovoltaic Specialists Conference, May 21-25 (1990), Kissimimee, Florida, USA, pp. 317-322.

Hansen R. L. and M. Banan, “Cleaning of polycrystalline silicon for charging into a Czochralski growing process”, Unite State Patent 5,445,679 (1995).

Hansen R. L., L. E. Drafall, R. M. McCutchan, J. D. Holder, L. A. Allen, and R. D. Shelley, “Method for improving zero dislocation yield of single crystal”, Unite State Patent 5,980,629 (1999).

Hashizume H., S. Sumie, and Y. Nakai, “Carrier Lifetime Measurements by Microwave Photoconductivity Decay Method”, ASTM STP15693S (1998).

Helmreich D. and E. Sirtl, “Progress in ingot and foil casting of silicon”, Journal of Crystal Growth, 79 (1986) pp. 562-571.

Hermann J. and F. Eckehard, “Metallverluste beim gluehen von molybdaen in sauerstoff, luft und wasserdampf bei hohen temperaturen und niedrigen druecken”, Zeitschrift fuer Metallkunde, 64 (1973) pp.353-358.

Heuer M., T. Buonassisi, A. A. Istratov, M. D. Pickett, M. A. Marcus, A. M. Minor, and E. R. Weber, “Transition metal interaction and Ni-Fe-Cu-Si phase in silicon”, Journal of Applied Physics, 101 (2007) pp. 123510.

Hezel R. and K. Jaeger, “Low-temperature surface passivation of silicon for solar cells”, Journal of the electrochemical Society, 136 (1989) pp. 518-523.

Hoex B., S. B. S. Heil, E. Langereis, M. C. M. Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3”, Applied Physics Letters, 89 (2006) pp. 042112.

Hoex B., J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al¬2O3”, Applied Physics Letters, 91 (2007) pp. 112107.

Horio M., “Recycling system of wire saw abrasive grain slurry and centrifugal separators therefor”, Unite State Patnet 6,615,817 B2 (2003).

Hylton J. D., A. R. Burgers, and W. C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells”, Journal of the electrochemical society, 151 (2004) pp. G408-G427.

Istratov A. A., H. Hieslmair, O. F. Vyvenko, E. R. Weber, and R. Schindler, “Defect recognition and impurity detection techniques in crystalline silicon for solar cells”, Solar Energy Materials & Solar Cells, 72 (2002) pp. 441-451.

Istratov A. A., T. Buonassisi, M. D. Pickett, M. Heuer, and E. R. Weber, “Control of metal impurities in dirty multicrystalline silicon for solar cells”, Materials Science and Engineering B, 134 (2006) pp. 282-286.

Jones B., D. Skelton, S. Parthasarathy, and C. P. Khattak, “Crystal growth furnace for the production of 450 kg multicrystalline silicon ingots”, The 15th International Conference on Crystal Growth, 12-17 Aug. (2007), Salt Lake City, Utah.

Kapur V. K. and U. V. Choudary, “Silicon Purification”, Unite State Patent 4,388,286 (1983).

Katsuyoshi M.,”Lattice preferred orientations in naturally deformed peridotites obtained from SEM/EBSP analysis”, Structural Geology, 44 (2000) pp. 63-66.

Kardauskas M.J., M.D. Rosenblum, B.H. Mackintosh, and J. P. Kalejs, “The coming of age of a new PV wafer technology – some aspects of EFG polycrystalline silicon sheet manufacture”, 25th PVSC, 13-17 May (1996), Washington, D.C., pp. 383-388.

Kazmerski L., D. Gwinner, and A. Hicks, National Renewable Energy Laboratory NREL, (2007).

Khattak C. P., D. B. Joyce, and F. Schmid, “Production of solar grade (SoG) silicon by refining liquid metallurgical grade (MG) silicon”, NREL/ SR-520-30716 Final report, 19 April (2001).

Khattak C. P., D. B. Joyce and F. Schmid, “A simple process to remove boron from metallurgical grade silicon”, Solar Energy Materials & Solar Cells, 74 (2002) pp. 77-89.

Kim D. and Y. K. Kim, “Characteristics of structural defects in the 240 kg silicon ingot grown by directional solidification process”, Solar Energy Materials & Solar Cells, 90 (2006) pp. 1666-1672.

Kim J. M. and Y. K. Kim, “Growth and characterization of 240 kg multicrystalline silicon ingot grown by directional solidification”, Solar Energy Materials & Solar Cells, 81 (2004) pp. 217-224.

Kitamura M., N. Usami, T. Sugawara, K. Kutsukake, K. Fujiwara, Y. Nose, T. Shishido, and K. Nakajima, “Growth of multicrystalline Si with controlled grain boundary configuration by the floating zone technique”, Journal of Crystal Growth, 280 (2005) pp. 419-424.

Kotval P. S. and H. B. Strock, “Process for the production of improved refined metallurgical silicon”, Unite State Patent 4,193,975 (1980).

Kumar S. P. and P. Prakash, “Process for the preparation of polycrystalline silicon ingot”, Unite State Patent 5,431,869 (1995).

Kumaravelu G., M. M. Alaisi, and A. Bittar, “Surface texturing for silicon solar cells using reactive ion etching technique”, Proceeding of the 29th IEEE PVSC conference, May 19-24 (2002), New Orleans, Louisiana, USA, pp. 258-261.

Kutsukake K., N. Usami, K. Fujiwara, Y. Nose, and K. Nakajima, “Influence of structural imperfection of Σ5 grain boundaries in bulk multicrystalline Si on their electrical activities”, Journal of Applied Physics, 101 (2007) 063509.

Kvande R., L. Arnberg, and C. Martin, “Influence of crucible- and coating quality on the properties of multicrystalline silicon for solar cells”, The 4th Asian Conference of Crystal Growth and Crystal Technology CGCT-4, 21-24 May (2008), Sendai, Japan.

Kvande R., Ø. Mjøs, and B. Ryningen, “Growth rate and impurity distribution in multicrystalline silicon for solar cell”, Materials Science and Engineering A, 413-414 (2005) pp. 545-549.

Lamoreaux, R. H., D. L. Hildenbrand, L. Brewer, “Vaporization behavior of oxides”, High Temperature Science, 20 (1984) pp. 37-49.

Lange H., W. Krumbe, and H. Gatzweiler, “Melting pot with silicon protective layers, method for applying said layer and the use thereof”, Unite State Patent 6,165,425 (2000).

Lee J. Y. and S. W. Glunz, “Investigation of various surface passivation schemes for silicon solar cells”, Solar Energy Materials & Solar Cells, 90 (2006) pp. 82-92.

Lee S. E., S. W. Choi, and J. Yi, “Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate”, Thin Solid Films, 376 (2000) pp. 208-213.

Lemiti M., A. Kaminski, A. Fave, and E. Fourmond, “New solar cell production process may improve efficiency and reduce cost”, The International Society for Optical Engineering SPIE Newsroom (2007).

Leung W., “Separation of dispersed suspension in rotating test tube”, Separation and Purification Technology, 38 (2004) pp. 99-119.

Luque A. and S. Hegedus, “Handbook of photovoltaic science and engineering”, 2003 John Wiley & Sons.

Macdonald D., A. Cuevas, M. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells”, International Solar Energy Society, Solar World Congress, November 25-30 (2001), Adelaide, Australia, pp. 1-7.

Macdonald D., A. Cuevas, A. Kinomura, Y. Nakano, and L. J. Geerligs, “Transition-metal profiles in a multicrystallind silicon ingot”, Journal of Applied Physics, 97 (2005) pp. 033523.

Marques F. C., J. Urdanivia, and I. Chambouleyron, “A simple technology to improve crystalline-silicon solar cell efficiency”, Solar Energy Materials & Solar Cells, 52 (1998) pp. 285-292.

Martinelli G. and R. Kibizov, “Growth of stable dislocation-free 3-grain silicon ingots for thinner slicing”, Applied Physics Letter, 62 (1993) pp. 3262-3263.

Matsuo H., R. B. Ganesh, S. Nakano, L. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, and K. Kakimoto, “Thermodynamical analysis of oxygen incorporation from a quartz crucible during solidification of multicrystalline silicon for solar cell”, The 4th Asian Conference of Crystal Growth and Crystal Technology CGCT-4, 21-24 May (2008), Sendai, Japan.

Minster O., J. Granier, C. Potard, and N. Eustathopoulos, “Molding and directional solidification of solar-grade silicon using an insulating molten salt”, Journal of Crystal Growth, 82 (1987) pp. 155-161.

Möller H. J., “Basic mechanisms and models of multi-wire sawing”, Advanced Engineering Materials, 6 (2004) pp. 501-513.

Morita K. and T. Miki, “Thermodynamics of solar grade silicon refining”, Intermetallics, 11 (2003) pp. 1111-1117.

Mosbah A., S. Abed, N. Bouhssira, M. S. Aida, and E. Tomasella, “Preparation of highly textured surface ZnO thin films”, Materials Science and Engineering B, 129 (2006) pp. 144-149.

Mühlbauer A., V. Diers, A. Walther, and J. G. Grabmaier, “Removal of C/SiC from liquid silicon by directional solidification”, Journal of Crystal Growth, 108 (1991) pp. 41-52.

Müller A., M. Ghosh, and M. Dietrich, “Do the weight and the growth rate of multicrystalline silicon ingots influence the efficiencies of solar cells?”, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, May 7-12, Waikoloa, Hawaii, USA, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4 (2007) pp. 1164-1166.

Müller A. and P. M. Nasch, “Re-Si-CLE : Recycling of silicon rejects from PV production Cycle”, Annual Report 2003, NET Nowak Energy & Technology Ltd.

Nagashio K., H. Murata, and K. Kuribayashi, “In situ observation of solidification behavior of Si melt dropped on Si wafer by IR thermography”, Journal of Crystal Growth, 275 (2005) pp. e1685-e1690.

Nagashio K. and K. Kuribayashi, “Growth mechanism of twin-related and twin-free facet Si dendrites”, Acta Materialia, 53 (2005) pp. 3021-3029.

Nakajima K., K. Fujiwara, N. Usami, and S. Okamoto, “Growth of high-quality Si multicrystals with same grain orientation and large grains using dendritic casting method and formation mechanism of dendrite crystals with parallel twins”, The 4th Asian Conference of Crystal Growth and Crystal Technology CGCT-4, 21-24 May (2008), Sendai, Japan.

Nakajima K., K. Fujiwara, W. Pan, M. Tokairin, Y. Nose, and N. Usami, “Development of textured high-quality Si multicrystalline ingots with same grain orientation and large grain sizes by the new dendritic casting method”, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, May 7-12, Waikoloa, Hawaii, USA, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4 (2007) pp. 964-967.

Nakajima K., K. Fujiwara, W. Pan, N. Usami, and T. Shishido, “Growth and properties of SiGe multicrystals with microscopic compositional distribution and their applications for high-efficiency solar cells”, Journal of Crystal Growth, 275 (2005) pp. e566-e460.

Nara S., T. Sekiguchi, and J. Chen, “High quality multicrystalline silicon grown by multi-stage solidification control method”, The European Physical Journal Applied Physics, 27 (2004) pp. 389-392.

Nishijima S., Y. Izumi, S. I. Takeda, H. Suemoto, A. Nakahira, and S. I. Horie, “Recycling of abrasives from wasted slurry by superconducting magnetic separation”, IEEE Transactions on Applied Superconductivity, 13 (2003) pp. 1596-1599.

Nishimoto Y., T. Ishihara, and K. Namba, “Investigation of acidic texturization for multicrystalline silicon solar cells”, Journal of the Electrochemical Society, 146 (1999) pp. 457-461.

Nohira T., K. Yasuda, and Y. Ito, “Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon”, Nature Materials, 2 (2003) pp. 397-401.

Olsen E. and E. J. Øvrelid, “Silicon nitride coating and crucible-effects of using upgraded materials in the casting of multicrystalline silicon ingots”, Progress in Photovoltaics: Research and Application, 16 (2008) 93-100.

Pan W., K. Fujiwara, N. Usami, T. Ujihara, K. Nakajima, and R. Shimokawa, “Ge composition dependence of properties of solar cells based on multicrystalline SiGe with microscopic compositional distribution”, Journal of Applied Physics, 96 (2004) pp. 1238-1241.

Panek P., M. Lipiñski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells”, Journal of Materials Science, 40 (2005) pp. 1459-1463.

Pfann W. G., “Principle of zone-melting”, Transaction of American Institute of Mining and Metallurgical Engineers, 194 (1952) pp. 747-753.

Pires J. C. S., A. F. B. Braga, and P. R. Mei, “Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace”, Solar Energy Materials & Solar Cells, 79 (2003) pp. 347-355.

Priewasser G., L. Huber, and G. Spatzier, “Process for casting silicon blocks of columanar structure”, Unite State Patent 5,254,300 (1993).

Richardson J. F. and W. N. Zaki, “The sedimentation of a suspension of uniform spheres under conditions of viscous flow”, Chemical Engineering Science, 3 (1954) pp. 65-73.

Rosebblum M. D. and J. I. Hanoka, “Method for forming diffusion junctions in solar cell substrates”, Unite State Patent 5,270,248 (1993).

Sabacky B. J. and M. T. Hepworth, “Molybdenum dioxide-molybdenite roasting”, Unite State Patent 4,462,822 (1984).

Saito T., A. Shimura, and S. Ichikawa, “A reusable mold in directional solidification for silicon solar cells”, Solar Energy Materials, 9 (1983) pp. 337-345.

Sancier K. M., “Process for recovery of silicon from a reaction mixture”, Unite State Patent 4,777,030 (1988).

Sanjurjo A., L. Nanis, K. Sancier, R. Bartlett, and V. Kapur, “Silicon by sodium reduction of silicon tetrafluoride”, Journal of Electrochemistry Society: Solid-State Science and Technology, 128 (1981) pp. 179-184.

Sanjurjo A. and K. M. Sancier, “Melt consolidation of silicon powder”, Unite State Patent 4,676,968 (1987).

Sanjurjo A. and S. Pressacco, “Process for purification of solid material”, Unite State Patent 4,828,814 (1989).

Sarti D. and R. Einhaus, “Silicon feedstock for the multi-crystalline photovoltaic industry”, Solar Energy Materials & Solar Cells, 72 (2002) pp. 27-40.

Sato T., T. Sugira, M. Ohtsubo, S. Matsuno, and M. Konagai, “Texture etching of Si with atomic hydrogen generated by hot wire method through SiO2 masks for solar cell applications”, Japanese Journal of Applied Physics, 46 (2007) pp. 6796-6800.

Schei A., “Method for refining of silicon”, Unite State Patent 5,788,945 (1998).

Schmid F., M.B. Smith, and C.P. Khattak, "Kerf Reduction Using Shaped Wire”, 23rd IEEE Photovoltaic Specialists Conference, (1993), pp. 205-208, New York.

Schmidt J., K. Bothe, R. Bock, C. Schmiga, R. Krain, and R. Brendel, “N-type silicon - the better material choice for industrial high-efficiency solar cells?”, 22nd European Photovoltaic Solar Energy Conference, September 3-7 (2007), Milan, Italy, pp. 998-1001.

Schroder, D. K., “Semiconductor material and device characterization”, Wiley-Interscience Publication, (1990).

Schwirtlich I., P. Woditsch, and W. Koch, “Process for the production of low carbon silicon”, Unite State Patent 4,877,596 (1989).

Semilab, “LBIC and reflectance measurement”, WT-2000 User’s Manual.

Semilab, “Theory of μ–PCD for measuring lifetime”, Technical Note 200 (2008).

Shimura F., “Semiconductor silicon crystal technology”, Academic Press Inc., (1989).

Singh P. K., R. Kumar, M. Lal, S. N. Singh, and B. K. Das, “Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions”, Solar Energy Materials & Solar Cells, 70 (2001) pp. 103-113.

Stephens A. W., A. G. Aberle, and M. A. Green, “Surface recombination velocity measurements at the silicon-silicon dioxide interface by microwave-detected photoconductance decay”, Journal of Applied Physics, 76 (1994) pp. 363-370.

Sudo F. and T. Fujii, “Progress in technological developments during the past 50 years at Kawasaki steel and future prospects”, Kawasaki Steel Technical Report, 44 (2001) pp. 3-17.

Szulufcik J., F. Duerinckx, J. Horzel, E. V. Kerschaver, H. Dekkers, S. D. Wolf, P. Choulat, C. Allebe, and J. Nijs, “High-efficiency low-cost integral screen-printing multicrystalline silicon solar cells”, Solar Energy Materials & Solar Cells, 74 (2002) pp. 155-163.

Takato H., M. Yamanaka, Y. Hayashi, R. Shimokawa, I. Hide, S. Gohda, F. Nagamine, and H. Tsuboi, “Effects of optical confinement in textured antireflection coating using ZnO films for solar cells”, Japanese Journal of Applied Physics, 31 (1992) pp. L1665-L1667.

Tayanagi M., N. Usami, W. Pan, K. Ohdaira, K. Fujiwara, Y. Nose, and K. Nakajima, “Improvement in the conversion efficiency of single-junction SiGe solar cells by intentional introduction of the compositional distribution”, Journal of Applied Physics, 101 (2007) pp. 054504.

Tsujino K., M. Matsumura, and Y. Nishimoto, “Texturization of multicrystalline silicon wafers by chemical treatment using metallic catalyst”, 3rd World Conference on Photovoltaic Energy Conversion, May 11-18 (2003), Osaka, Japan, pp. 1507-1510.

Tsujino K., M. Matsumura, and Y. Nishimoto, “Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metallic catalyst”, Solar Energy Materials & Solar Cells, 90 (2006) pp. 100-110.

Tsuo Y. S., J. M. Gee, P. Menna, D. S. Strebkov, A. Pinov, and V. Zadde, “Environmentally benign silicon solar cell manufacturing”, 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 6-10 July (1998), Vienna, Austria.

Tynyshtybaev K. B., K. T. Igibaev, D. K. Suleev, B. P. Babich, L. V. Chernajhovsky, and B. I. Zel’berg, “Direct carbothermal receiving of solar grade silicon”, Materials Science and Engineering B, 134 (2006) pp. 296-302.

Usami N., M. Kitamura, T. Sugawara, K. Kutsukake, K. Ohdaira, Y. Nose, K. Fujiwara, T. Shishido, and K. Nakajima, “Floating zone growth of Si bicrystals using seed crystals with artificially designed grain boundary configuration”, Japanese Journal of Applied Physics, 44 (2005) pp. L778-L780.

Usami N., K. Kutsukake, T. Sugawara, K. Fujiwara, W. Pan, Y. Nose, T. Shishido, and K. Nakajima, “Realization of bulk multicrystalline silicon with controlled grain boundaries by utilizing spontaneous modification of grain boundary configuration”, Japanese Journal of Applied Physics, 45 (2006) pp. 1734-1737.

Vazsonyi E., K. D. Clercq, R. Einhaus, E. V. Kerschaver, K. Said, J. Poortmans, J. Szlufcik, and J. Nijs, “Improved anisotropic etching process for industrial texturing of silicon solar cells”, Solar Energy Materials & Solar Cells, 57 (1999) pp. 179-188.

Wakagi M., H. I. Chahara, K. I. Onisawa, Y. Wawakubo, T. Kichikawa, T. Satoh, and T. Minemura, “Rapid heat treatment for spin coated ITO films by electron plasma annealing method”, Thin Solid Films, 411 (2002) pp. 46-49.

Wan Y., P. S. Raghavan, C. Chartier, J. Talbott, and C. Khattak, “Low-cost multicrystalline silicon wafers by purifying metallurgical and grade silicon with tin solution”, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, May 7-12, Waikoloa, Hawaii, USA, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4 (2007) pp.1342-1345.

Willeke G., H. Nussbaumer, H. Bender, and E. Bucher, “A simple and effective light trapping technique for polycrystalline silicon solar cells”, Solar Energy Materials & Solar Cells, 26 (1992) pp. 345-356.

Woditsch P. and W. Koch, “Solar grade silicon feedstock supply for PV industry”, Solar Energy Materials & Solar Cells, 72 (2002) pp. 11-26.

Wosik W. Z., P. B. Grabiec, and G. Lux, “Fabrication of submicron junctions- proximity rapid thermal diffusion of phosphorous, boron, and arsenic”, IEEE Transactions on Electron Devices, 41 (1994) pp. 2281-2290.

Xi Z., D. Yang, W. Dan, C. Jun, X. Li, and D. Que, “Texturization of cast multicrystalline silicon for solar cells”, Semiconductor Science and Technology, 19 (2004) pp. 485-489.

Yang C.C., J.C. Li, and Q. Jiang, “Temperature-pressure phase diagram of silicon determined by Clapeyron equation”, Solid State Communications, 129 (2004) pp. 437-441.

Yuge N., M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, and F. Aratani, “Purification of metallurgical-grade silicon up to solar grade”, Progress in Photovoltaics: Research and Applications, 9 (2001) pp. 203-209.

Zadde V. V., A. B. Pinov, and D. S. Strebkov, “New method of solar grade silicon production”, 12th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Auguest (2002) pp. 179-189.

Zhao J., A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates”, Progress in Photovoltaics: Research and Applications, 7 (1999) pp. 471-474.

Zhao J., “Recent advances of high-efficiency single crystalline silicon solar cells in processing technologies and substrate materials”, Solar Energy Materials & Solar Cells, 82 (2004) pp. 53-64.

尤如瑾, “世界太陽光電產業現況與發展”, 機械工業科技第263期, (2005) pp. 156-166.

黃坤祥, “粉末冶金學”, 中華民國粉末冶金協會, 2001.

林明獻, “矽晶半導體材料技術”, 全華科技圖書股份有限公司,1999.

芝田隼次, 村山憲弘, 長江賢吾, “シリコンエハー硏削廃棄物からのSiCの分離再生について”, 化学工学論文集, 32 (2006) pp. 93-98.

ASTM F374-02, “Standard test method for sheet resistance of silicon epitaxial, diffused, polysilicon, and ion-implanted layers using an in-line four-point probe with the single-configuration procedure”, (2003).

ASEM F723-99, “Standard practice for conversion between resistivity and dopant density for boron-doped, phosphorus-doped, and arsenic-doped silicon”, (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top