參考文獻
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-sate physics and electronics,” Phys. Rev. Letters., 58, 2059–2062, (1987).
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattice,” Phys.Rev.Letters, 58, 2486 –2489, (1987).
[3] Kurt Busch and Sajeev John, “Liquid Crystal Photonic Band Gap Materials: The Tunable Electromagnetic Vacuum,” Physical Review Letters, 83 (5), 967-970, (1999).
[4] Shung, Kenneth W. K.; Mahan, G. D. ” Calculated photoemission spectra of sodium,” Physical Review Letters, 57(8), 1076-9, (1986).
[5] C. J. M. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. F. Krauss, R. M. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystal,” Electron.Letters., 35, 228–230,(1999).
[6] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, 407, 608–610, (2000).
[7] T. Baba, N. Fukaya, and A. Motegi, “Light propagation characteristicsin photonic crystal waveguides,” Tech.Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-5, 290–291, (2001).
[8] J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett., 24, 49–51, (1999).
[9] D. J. Ripin, Kuo-Yi Lim, G. S. Pertrich, Pierre R. Villeneuve, Shanhui Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, “Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides.,” Journal of applied physics., 87, 3, (2000)
[10] Chow, Edmond; Lin, S.Y.; Johnson, S.G.; Villeneuve, P.R.; Joannopoulos, J.D.; Wendt, J.R.; Vawter, G.A.; Zubrzycki, W.; Hou, H.; Alleman, “A.. Three-dimensional control of light in a two-dimensional photonic crystal slab.” Nature, 407 , 983, (2000).
[11] Cregan, R. F.; Mangan, B. J.; Knight, J. C.; Birks, T. A.; Russell, P. St. J.; Roberts, P. J.; Allan, D. C. “Single-mode photonic band gap guidance of light in air.” Science (Washington, D. C. 285(5433), 1537-1539, (1999).
[12] Shawn-Yu Lin, V. M. Hietala, Li Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” 21, 21, (1996).
[13] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, 58(16), 10096–10099, (1998).
[14] T. F. Krauss, “Photonic crystal integrated optics,” Tech. Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-1, 282–283, (2001).
[15] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, S. R. Kurtz and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature , 394, 16, (2002).
[16] J. G. Fleming, S. Y. Lin, I. EI-Kady and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large infrared bandgap ,” Nature , 417, 2, (2002).
[17] Steven G. Johnsona and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett., 77(22), 3490, (2000).
[18] K. Aoki, “Three-dimensional photonic crystal stacking by micro- manipulation,” Appl. Phys. Lett., 81(17), 3122, (2002).
[19] Yurii A. Vlasov, Xiang-Zheng Bo, James C. Sturm & David J. Norris,“On-chip natural assembly of silicon photonic bandgap crystals ,” Nature , 414, 15, (2001).
[20] Gruning, U.; Lehmann, V..Macroporous. “Silicon with a complete two-dimensional photonic band gap centered at 5 μm.” Applied Physics Letters, 68(6), 747, (1996).
[21] Scott Kennedy, Michael Brett, Ovidiu Toader, and Sajeev John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Letters, 2(1), 59, (2002).
[22] Ovidiu Toader and Sajeev John, “Proposed square spiral micro- fabrication architecture for large three-dimensional photonic band gap crystals,” Science, 292, 1133, (2001).
[23] A. Urbas, Y. Fink, and E. L. Thomas, “One-dimensionally periodic
dielectric reflectors from self-assembled block copolymer–homopolymer blends,” Macromolecules, 32, 4748–4750, (1999).
[24] S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett., 33(14), 1260–1261,(1997).
[25] T. Kawashima, T. Sato, K. Miura, Y. Ohtera, N. Ishino, and S. awakami, “Autocloning technology: Fabrication method for photonic crystals based on sputtering process,” Proc. Int. School Quantum electronics, 115–122, (2000).
[26] T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami “autocloning technique and their application,” Opt. Quantum Electron, 34(1), 63–70, (2001).
[27] T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett., 77(16), 2613–2615, (2000).
[28] Takashi Sato, Yasuo Ohtera, Naoto Ishino, Kenta Miura, and S. Kawakami, “In-Plane Light Propagation in Ta2O5/SiO2 Autocloned Photonic crystals,” J. of Quantum. Electronics, 38, 7, (2002).
[29] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a Two-Dimensional photonic crystal,” Physical review letters, 93, 7, (2004).
[30] T. Baba, N. Fukaya, and A. Motegi, “Light propagation characteristics in photonic crystal waveguides,” Tech. Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-5, 290–291, (2001).
[31] S. Kawakami and Y. Ohtera, “Band engineering of photonic crystals: Realization of novel waveguides,” Proc. 3rd Workshop Photonic Electromagnetic Crystal Structures, St. Andrews, Scotland , (2001).
[32] K. Miur , Y. Ohtera, H. Ohkubo, N. Akutsu and S. Kawakami, “Reduction of propagation and bending losses of heterostructured photonic crystal waveguides by use of a high-Δ structure,” Optics letters , 28, 9, (2003).
[33] M. Shirane, A. Gomyo, K. Miura and S. Kawakami, “Optical directional couplers based on autoconed photonic crystals, ” Electronic Lett, 39, 1, (2003).
[34] Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett., 35(15), 1271–1272 , (1999).
[35] M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full band gap,” Appl. Phys. Lett., 77, 4256–4258, (2000).
[36] Osamu Hanaizumi, Yasuo Ohtera, Takashi Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: Fabrication and observation,” Appl. Phys. Lett., 74, 6, (1999).
[37] Hiroyuki Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys., 42, 1219-1221, (2003).
[38] T. Kawashima, T. Sato, K. Miura, Y. Ohtera, N. Ishino, and S. awakami “A new fabrication technique for photonic crystals :Nanolithography combined with alternating-layer deposition” Optical and Quantum Electronics, 53-61, (2002).
[39] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi and Toshiaki, “Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering,” Appl. Phys. Lett., 74, 10, (1999).
[40] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi and Toshiaki, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett., 74, 9, (1999).
[41] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, Takashi Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Tech., 17, 11 , (1999).
[42] H. Kosaka, T. Kawashima, A. Tomita, Takashi Sato and S. Kawakami, “Photonic-crystal spot-size converter,” Appl. Phys. Lett., 76, 3, (2000).
[43] S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, “3-D photonic-crystal heterostructures: fabrication and in-Line resonator,” Photonics Tech. Lett., 15, 6, (2003).
[44] T. Sato, N. Ishino, K. Miura, S. Kawakami, and M. Miyagi, “Application of in-plane type autocloned photonic crystals,” Institute of Electronics, Information and Communication Engineers, Tech. Rep. OPE2001-46, (2001).
[45] Shanhui Fan, Rerre FL Villeneuve, Robert D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron lengthscales,” Appl. Phys. Lett. , vol.65 (II), 12, (1994).
[46] M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Transmission characterization of drilled alternating-layer 3-D photonic crystals,” Appl. Phys. Lett. , 93, 11, (2003).
[47] K. Wang, P. Filloux and N. Paraire, “Two-dimensional photonic crystals by focused-ion-beam etching of multilayer membranes,” J. Vac. Sci. Technol. B, 21, 3, (2003).
[48] Lin Zhang and Changxi Yang, “Polarization splitter based on photonic crystal fibers,” Optics Express, 11, 9, (2003).
[49] N. Paraire, P. Filloux and K. Wang, “Patterning andcharacterization of 2D photonic crystals fabricated by focused ion beam etching of multilayer membranes,” Nanotechnology, 15, 341–346, (2004).
[50] K. H. Dridi, “Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals,” Optics Eepress, 11(10), 1156, (2003).
[51] S.Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape-formation of 3D periodic nanostructures by bias sputtering,” Appl. Phys. Lett., 74, 463–465,(1999).
[52] T. Kawashima, Takashi Sato, Yasuo Ohtera, and S. Kawakami, “Tailoring of the Unit Cell Structure of Autocloned Photonic Crystals,” J. of Quantum. Electronics, 38, 7, (2002).
[53] Hong Xiao著, 張鼎張、羅正忠譯, 半導體製程技術導論, 台灣培生出版股份有限公司,台北市, (2002)。
[54] 莊達人, VLSI製造技術, 高立圖書有限公司出版,台北市, (2000)。
[55] Osamu Hanaizumi, Kazutaka Ono, Yuichi Ogama, Takehiro Koga, Yuzo Hasegawa,Atsushi Ogihara and Go Saito, “Fabrication and assessment of sputtered Si:SiO2 films emitting white light without annealing, ” Jpn. J. Appl. Phys. 41, 1084, (2002).
[56] Osamu Hanaizumi, Kazutaka Ono, and Yuichi Ogawa, “Blue-light emission from sputtered Si:SiO2 films without annealing, ” Appl. Phys. Lett., 82, 4, (2003).
[57] Osamu Hanaizumi, Makoto. Saito and Yasuo. Ohtera, “Introducing CdS into two- and three-dimensional photonic crystals, ” Optical and Quantum Electronics, 34, 71-77, (2002).
[58]李幸芬,利用半導體製程技術研製三維光子晶體,國立清華大學 碩士論文, 新竹市, (2004)。[59] V.G.Veselago, “Electrodynamics of materials with simultaneously negative values of ε[dielectric constant] and μ[magnetic permeability.” Uspekhi Fizicheskikh Nauk,92(3), 517-26, (1967).
[60] J.B.Pendry, “Negative Refraction Makes a Perfect Lens.”, Physical Review Letters, 85(18), 3966-3969, (2000).
[61] Shelby, R. A.; Smith, D. R.; Schultz, S. “Experimental verification of a negative index of refraction.”, Science (Washington, DC, United States), 292(5514), 77-78, (2001).
[62] J. B Pendry, ”Negative refraction.”, Contemporary Physics, 45(3), 191-202, (2004).
[63] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, “Experimental Verification and Simulation of Negative Index of Refraction Using Snell's Law.”, Physical Review Letters, 90(10), 107401/1-107401/4, (2003)
[64] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, S Sridhar, “Negative refraction and left-handed electromagnetism in microwave photonic crystals.” Los Alamos National Laboratory, Preprint Archive, Condensed Matter 1-11, (2003).
[65] E.Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens.”, Physical Review Letters, 91(20), 207401/1-207401/4, (2003)
[66] 葉真, “關於左手物質和負折射現象”, 物理雙月刊, 廿六卷二期, 444-449, (2004)。