跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭閔元
研究生(外文):Min-Yuan Xiao
論文名稱:SOI漸變式非對稱波導定向耦合極化分光器
論文名稱(外文):Silicon-on-Insulator Polarization Beam Splitter Based on a Taper Asymmetrical Directional Coupler
指導教授:于欽平
指導教授(外文):Chin-Ping Yu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:定向耦合器積體光學平面光波導極化分光器silicon on insulator (SOI)漸變式波導
外文關鍵詞:planar lightwave circuit (PLC)silicon on insulator (SOI)directional couplertapered waveguidepolarization beam splitter (PBS)integrated optics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:428
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
在積體光路的設計與運作中,極化的特性限制了整個光學系統的運作,一個常用的解決方法,就是藉由極化分集系統來固定系統內的極化模態。其中極化分光器是構成極化分集系統中的一個重要的元件。本論文以 SOI 結構為基礎,設計極化分光器,並以縮小元件尺寸與增加元件操作頻寬為研究方向,以促進高密度積體光路的發展。
為了分析所設計的極化分光器,本論文使用三維有限差分時域法進行數值模擬分析,並整合非對稱型定向耦合器及漸變式波導結構形成極化分光器。首先,對於非對稱型定向耦合器,我們利用兩條非對稱直波導,將其設計成只有TE極化態可以耦合,藉由適當調整兩條波導的長度,使其所包含的能量相等,再加入漸變式的波導結構,成功的完成極化分光器的設計。為了改進極化分光器的長度與頻寬,我們對於低波導的後半段,選擇與高波導產生一個位移,分別考慮初始間距為 0.1
Polarization dependences of optical devices in highly-integrated optical systems become a major problem. To overcome this issue, one can implement polarization diversity scheme to achieve a single polarization on-chip network. One of the essential components in a polarization diversity scheme is the polarization beam splitter (PBS). In this thesis, we will a PBS based on a silicon-on-insulator (SOI) platform with reduced device size and broad operation bandwidth.
We use the three-dimensional Finite-Difference Time-Domain (3D-FDTD) method to perform the simulation. First, we use two asymmetric waveguides to design an asymmetric directional coupler with only TE-like mode phase matching condition. We then tape the lower waveguide to keep the TE-polarized light, and split the TE- and TM- polarized light. By utilizing an asymmetrical directional coupler with a tapered waveguide, we have achieved a 7.3
摘要i
英文摘要ii
目錄iii
圖目錄iv
表目錄viii
第一章 簡介1
1.1 絕緣層上鍍矽 2
1.2 極化分集系統 3
1.2.1 極化分光器 4
1.2.2 極化旋轉器 6
1.3 研究動機 8
第二章 數值模擬與分析方法11
2.1 波束傳播法11
2.2 有限差分時域法16
第三章 SOI 基本波導模擬與分析21
3.1 模態耦合理論 21
3.2 基本波導特性 27
第四章 極化分光器元件設計及分析36
4.1 非對稱型定向耦合器36
4.2 極化分光器41
第五章 結論與未來展望59
參考文獻60
[1]S. E. Miller, “Integrated optics: an introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2068, 1969.
[2]Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett., vol. 20, pp. 2182-2184, 2003.
[3]J Xia, J Yu, Z Wang, Z Fan, and S. Chen, “Low power 2 × 2 thermo-optic SOI waveguide switch fabricated by anisotropic chemical etching,” Opt. Commun., vol. 232, pp. 223-228, 2004.
[4]A. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett., vol. 21, pp. 651-653, 2009.
[5]Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened polarization beam splitters with two cascaded multimode interference sections,” IEEE Photon. Technol. Lett., vol. 21, pp. 1538-1540, 2009.
[6]B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys., vol. 73, pp. 613-618, 2001.
[7]J. Hong, H. Ryu, S. Park, J. Jeong, S. Lee, E. Lee, S. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett., vol. 15, pp. 72-74, 2003.
[8]A. Katigbak, J. Strother, and J. Lin, “Compact silicon slot waveguide polarization splitter,” Opt. Eng., vol. 48, pp. 080503-080505, 2009.
[9]B. K. Yang, S. Y. Shin, and D. M. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett., vol. 21, pp. 432-434, 2009.
[10]T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett., vol. 17, pp. 393-395, 2005.
[11]L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett., vol. 6, pp. 402-405, 1994.
[12]L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett., vol. 19, pp. 1286-1288, 2007.
[13]L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug R. W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol., vol. 25, pp. 740-746, 2007.
[14]T. Yamazaki, H. Aono, J. Yamauchi, and H. Nakano, “Coupledwaveguide polarization splitter with slightly different core widths,” J. Lightwave Technol., vol. 26, pp. 3528-3533, 2008.
[15]J. Xiao, X. Liu, and X. Sun, “Design of a compact polarization splitter in horizontal multiple-slotted waveguide structures,” Jpn. J. Appl. Phys., vol. 47, pp. 3748-3754, 2008.
[16]I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett., vol. 17, pp. 100-102, 2005.
[17]Y. Yue, L. Zhang, J.-Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett., vol. 35, pp. 1364-1366, 2010.
[18]X. G. Tu, S. S. N. Ang, A. B. Chew, J. H. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett., vol. 22, pp. 1324-1326, 2010.
[19]H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express, vol. 14, pp. 12401-12408, 2006.
[20]M. Komatsu, K. Saitoh and M. Koshiba, “Design of miniaturized silicon wire and slot waveguide polarization splitter
based on a resonant tunneling,” Opt. Express, vol. 17, pp. 19225-19233, 2009.
[21]D. Dai and J. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express, vol. 19, pp. 18614-18620, 2011.
[22]D. Dai, Z. Wang, and J. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett., vol. 36, pp. 2590-2592, 2011.
[23]Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett., vol. 19, pp. 825-827, 2007.
[24]X. Ao, L. Liu, W. Lech, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett., vol. 89, pp. 171115-171117, 2006.
[25]J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett., vol. 32, pp. 1662-1664, 2007.
[26]V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun., vol. 127, pp. 7-13, 1996.
[27]J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron., vol. 16, pp. 53-60, 2010.
[28]C. F. Kane, and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett., vol.7, pp. 535-537, 1995.
[29]R. Guider, “Novel materials and optical waveguide systems for silicon photonics,” M. S. Thesis, Department of Physics, University of Trento, Italy, 2009.
[30]R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 1971-1974, 1986.
[31]T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photonics, vol. 1, pp. 57-60, 2007.
[32]D. Dai, Y. Shi, and S. He, “Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Appl. Opt., vol. 45, pp. 4941-4946, 2006.
[33]V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett., vol. 29, pp. 1209-1211, 2004.
[34]Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett., vol. 29, pp. 1626-1628, 2004.
[35]P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express, vol. 14, pp. 9197-9202, 2006.
[36]N. N. Feng, R. Sun, L. C. Kimerling, and J. Michel, “Lossless strip-to-slot waveguide transformer,” Opt. Lett., vol. 32, pp. 1250-1252, 2007.
[37]W. P. Huang, and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron, vol. 29, pp. 2639-2649, 1993.
[38]A. Tavlove, “The finite-difference time-domain method,” Computational Electrodynamics, 1995.
[39]K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, pp. 302-307, 1966.
[40]J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185-200, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top