跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏吟玲
研究生(外文):Yin-Ling Wei
論文名稱:喹啉衍生物作為癌細胞毒殺劑之設計與合成
論文名稱(外文):Design and Synthesis of Quinoline Derivatives as Potential Cytotoxic Agents
指導教授:陳基旺陳基旺引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:69
中文關鍵詞:苯基喹衍生物癌細胞毒殺劑苯磺醯胺
外文關鍵詞:phenylquinolinecytotoxic agentbenzenesulfonamide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨為設計與合成喹啉(quinoline)衍生物作為潛能癌細胞毒殺劑,主要內容為合成3-phenylquinolines(7-10)與2-phenylquinolines(11-14、17與18)兩系列目標化合物,並評估其癌細胞毒殺活性。3-Phenylquinolines 7-10的製備,先由8-nitroquinoline與N-bromosuccinimide(NBS)在第3位進行溴化反應後,經Suzuki耦合反應可得到中間物8-nitro-3-phenylquinoline(1a)與3-(4-methoxyphenyl)- 8-nitroquinoline(1b)。將中間物1a,b使用鐵粉還原後,再與不同取代的benzenesulfonyl chloride、benzoyl chloride或phenyl isocyanate進行反應可得到目標化合物7-10。為了製備第8位取代之2-phenylquinoline 11-14,首先由o-nitroaniline與不同取代的桂皮醛於酸性條件下進行Doebner-Miller環化反應得到中間物8-nitro-2-phenylquinoline(2a)與2-(4-methoxyphenyl)-8-nitroquinoline(2b)。此外,第6位取代2-phenylquinoline 17與18的製備,先取不同取代的acetophenones與Vilsmeier-Haack試劑(POCl3/DMF)反應,接著與兩當量p-nitroaniline作用,最後在220-250 ℃下進行環化反應得到中間物6-nitro-2-phenylquinoline(3a)與2-(4-methoxyphenyl)-6-nitroquinoline(3b)。利用1a,b之相同序列反應,取中間物2a,b與3a,b製備目標化合物11-14、17與18。所有目標化合物經使用MTT分析法對胃癌細胞株(AGS)、肺癌細胞株(A549)、肝癌細胞株(HepG2)、大腸直腸癌細胞株(HT-29)與前列腺癌細胞株(PC-3)進行體外(in vitro)癌細胞毒性測試,結果顯示化合物7a-c、8a,b、10a,b、11b,c、12b、13a,b及14a,b對某些癌細胞株呈現有意義的抑制活性,其GI50(PC-3為IC50)在low micromolar與submicromolar濃度層級之間。其中活性呈現較強的化合物,在肝癌細胞中,7a、7c、8a與8b之GI50分別為0.12、0.18、0.11及0.20 μM;在胃癌細胞中,7a與8a之GI50分別為0.73及1.03 μM;在大腸直腸癌細胞中,11b之GI50為0.55 μM。進一步經流式細胞儀分析,發現7a與8a會使胃癌與肝癌細胞停滯在S與G2/M期;7c與8b會使肝癌細胞停滯在S與G2/M期,並誘導癌細胞走向細胞凋亡;11b會使得大腸直腸癌細胞停滯在G2/M期,且誘導癌細胞走向細胞凋亡。依據生物活性分析結果顯示此類具第8位苯磺醯胺基取代之3-苯基與2-苯基喹啉衍生物可作為發展新型抗癌藥物之先導化合物。
The aim of this thesis is to design and synthesize quinoline derivatives as potential cytotoxic agents. Two series of target compounds, 3-phenylquinolines (7-10) and 2-phenylquinolines (11-14, 17 and 18), were prepared and evaluated for their cytotoxicity. In the preparation of 3-phenylquinolines 7-10, the required intermediates 8-nitro-3-phenylquinoline (1a) and 3-(4-methoxyphenyl)-8-nitroquinoline (1b) were obtained from 8-nitroquinoline by bromination with N-bromosuccinimide (NBS) followed by Suzuki coupling reaction. Reduction of the nitro compounds 1a,b with iron powder and subsequent reaction with appropriate benzenesulfonyl chloride, benzoyl chloride or phenyl isocyanate provided target compounds 7-10. To prepare target 8-substituted 2-phenylquinolines 11-14, o-nitroaniline was reacted with appropriate cinnamaldehyde under acidic conditions via Doebner-Miller cyclization to give the intermediates 8-nitro-2-phenylquinoline (2a) and 2-(4-methoxyphenyl)-8-nitroquinoline (2b). The intermediates 6-nitro-2-phenylquinoline (3a) and 2-(4-methoxyphenyl)-6-nitroquinoline (3b) for the synthesis of target 6-substituted 2-phenylquinolines 17 and 18 were prepared from appropriate acetophenone by treatment with Vilsmeier-Haack reagent (POCl3/DMF), followed by reaction with 2 equivalents of p-nitroaniline and subsequent cyclization at 220-250 ℃. The intermediates 2a,b and 3a,b were subjected to the same sequence of reactions as performed on 1a,b to provide target compounds 11-14, 17 and 18. All target compounds were evaluated for in vitro antiproliferative activity against five human tumor cell lines (AGS, A549, HepG2, HT-29 and PC-3) by MTT assay. Among the tested compounds, 7a-c, 8a,b, 10a,b, 11b,c, 12b, 13a,b and 14a,b demonstrated significant cytotoxicity against certain cell lines with GI50 (IC50 for PC-3) values in the low micromolar to submicromolar concentration range. The present investigation has led to the discovery of some promising cytotoxic compounds with good potency as follows: 7a, 7c, 8a and 8b (for HepG2 cell line, GI50 = 0.12, 0.18, 0.11 and 0.20 μM, respectively); 7a and 8a (for AGS cell line, GI50 = 0.73 and 1.03 μM, respectively); 11b (for HT-29 cell line, GI50 = 0.55 μM). Furthermore, as revealed from the results obtained in flow cytometry analyses, compounds 7a and 8a caused S and G2/M arrests in AGS and HepG2 cells; compounds 7c and 8b caused S and G2/M arrests and induced apoptosis in HepG2 cells; and compound 11b caused G2/M arrest and induced apoptosis in HT-29 cells. These results suggest that the designed 8-benzenesulfonamido substituted 3-phenylquinolines and 2-phenylquinolines may serve as useful lead compounds for the development of new antitumor agents.
壹、緒論 1
貳、實驗目的與設計 14
叁、結果與討論 17
3.1 目標化合物之合成策略 17
3.2 目標化合物之合成 19
3.2.1 8-Substituted 3-phenylquinolines 7-10之合成 19
3.2.2 8-Substituted 2-phenylquinolines 11-14之合成 25
3.2.3 6-Substituted 2-phenylquinolines 17與18之合成 27
3.3 生物活性測試 29
3.3.1 硝基化合物1-3之體外活性測試 29
3.3.2 8-Substituted 3-phenylquinolines之體外活性測試 30
3.3.3 8-Substituted 2-phenylquinolines之體外活性測試 32
3.3.4 6-Substituted 2-phenylquinolines之體外活性測試 33
3.4 作用機制探討 34
肆、結論 39
伍、實驗部分 40
5.1 實驗儀器與檢驗方法 40
5.2 試藥、溶劑 40
5.3 合成步驟 41
5.4 生物活性評估 59
陸、參考文獻 63
Information received from the Internet Homepages of the Department of Health, Taiwan, R.O.C.(http://www.doh.gov.tw).
Eckhardt, S. Recent progress in the development of anticancer agents. Curr. Med. Chem. Anti-Canc. Agents 2002, 2, 419-439.
Nam, N.-H.; Parang, K. Current targets for anticancer drug discovery. Curr. Drug Targets 2003, 4, 159-179.
Sridhar, S. S.; Shepherd, F. A. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer 2003, 42, Suppl 1:S81-91.
Rosenbaum, E.; Zahurak, M.; Sinibaldi, V.; Carducci, M. A.; Pili, R.; Laufer, M.; DeWeese, T. L.; Eisenberger, M. A. Marimastat in the treatment of patients with biochemically relapsed prostate cancer: a prospective randomized, double-blind, phase I/II trial. Clin. Cancer Res. 2005, 11, 4437-4443.
Van Veldhuizen, P. J.; Faulkner, J. R.; Lara Jr, P. N.; Gumerlock, P. H.; Goodwin, J. W.; Dakhil, S. R.; Gross, H. M.; Flanigan, R. C.; Crawford, E. D. A phase II study of flavopiridol in patients with advanced renal cell carcinoma: results of Southwest Oncology Group Trial 0109. Cancer Chemother. Pharmacol. 2005, 56, 39-45.
Fuse, E.; Kuwabara, T.; Sparreboom, A.; Sausville, E. A.; Figg, W. D. Review of UCN-01 development: a lesson in the importance of clinical pharmacology. J. Clin. Pharmacol. 2005, 45, 394-403.
Badros, A. Z.; Goloubeva, O.; Rapoport, A. P.; Ratterree, B.; Gahres, N.; Meisenberg, B.; Takebe, N.; Heyman, M.; Zwiebel, J.; Streicher, H.; Gocke, C. D.; Tomic, D.; Flaws, J. A.; Zhang, B.; Fenton, R. G. Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J. Clin. Oncol. 2005, 23, 4089-4099.
Kelly, W. K.; O''Connor, O. A.; Krug, L. M.; Chiao, J. H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J. P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P. A.; Scher, H.; Richon, V. M. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 2005, 23, 3923-3931.
Papadimitrakopoulou, V.; Agelaki, S.; Tran, H. T.; Kies, M.; Gagel, R.; Zinner, R.; Kim, E.; Ayers, G.; Wright, J.; Khuri, F. Phase I study of the farnesyltransferase inhibitor BMS-214662 given weekly in patients with solid tumors. Clin. Cancer Res. 2005, 11, 4151-4159.
Schmidli, H.; Peng, B.; Riviere, G. J.; Capdeville, R.; Hensley, M.; Gathmann, I.; Bolton, A. E.; Racine-Poon, A. Population pharmacokinetics of imatinib mesylate in patients with chronic-phase chronic myeloid leukaemia: results of a phase III study. Br. J. Clin. Pharmacol. 2005, 60, 35-44.
Pao, W.; Miller, V. A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol. 2005, 23, 2556-2568.
Information received from the Internet Homepages of the Nobelprize.org (http://nobelprize.org).
Golias, C. H.; Charalabopoulos, A.; Charalabopoulos, K. Cell proliferation and cell cycle control: a mini review. Int. J. Clin. Pract. 2004, 58, 1134-1141.
Fischer, P. M.; Glover, D. M.; Lane, D. P. Targeting the cell cycle. Drug Disc. Today: Ther. Strat. 2004, 1, 417-423.
Malumbres, M.; Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 2001, 1, 222-231.
Brooks, G.; La Thangue, N. B. The cell cycle and drug discovery: the promise and the hope. Drug Disc. Today 1999, 4, 455-464.
Gali-Muhtasib, H.; Bakkar, N. Modulating cell cycle: current applications and prospects for the future drug development. Curr. Cancer Drug Targets 2002, 2, 309-336.
Hung, D. T.; Jamison, T. F.; Schreiber S. L. Understanding and controlling the cell cycle with natural products. Chem. Biol. 1996, 3, 623-639.
Sherr, C. J. Cancer cell cycles. Science 1996, 274, 1672-1677.
Vousden, K. H.; Prives, C. P53 and prognosis: new insights and further complexity. Cell 2005, 120, 7-10.
Tokino, T.; Nakamura, Y. The role of p53-target genes in human cancer. Crit. Rev. Oncol. Hematol. 2000, 33, 1-6.
Swanton, C. Cell-cycle targeted therapies. Lancet. Oncol. 2004, 5, 27-36.
Slingerland, J.; Pagano, M. Regulation of the Cdk inhibitor p27 and its deregulation in cancer. J. Cell. Physiol. 2000, 183, 10-17.
Senderowicz, A. M. Targeting cell cycle and apoptosis for the treatment of human malignancis. Curr. Opin. Cell Biol. 2004, 16, 670-678.
Welburn, J. P.I.; Endicott, J. A. Inhibition of the cell cycle with chemical inhibitors: a targeted approach. Semin. Cell Dev. Biol. 2005, 16, 369-381.
Zhou, B.-B. S.; Bartek, J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nature Rev. Cancer 2004, 4, 1-10.
Kawabe, T. G2 checkpoint abrogators as anticancer drugs. Mol. Cancer Ther. 2004, 3, 513-519.
Wood, K. W.; Cornwell, W. D.; Jackson, J. R. Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol. 2001, 1, 370-377.
Yan, Y.; Sardana, V.; Xu, B.; Homnick, C.; Halczenko, W.; Buser, C. A.; Schaber, M.; Hartman, G. D.; Huber, H. E.; Kuo, L. C. Inhibition of a mitotic motor protein: where, how, and conformational consequences. J. Mol. Biol. 2004, 335, 547-554.
Sakowicz, R.; Finer, J. T.; Beraud, C.; Crompton, A.; Lewis, E.; Fritsch, A.; Lee, Y.; Mak, J.; Moody, R.; Turincio, R.; Chabala, J. C.; Gonzales, P.; Roth, S.; Weitman, S.; Wood, K. W. Antitumor activity of a kinesin inhibitor. Cancer Res. 2004, 1, 3276-3280.
Bergnes, G.; Brejc, K.; Belmont, L. Mitotic kinesins: prospects for antimitotic drug discovery. Curr. Top. Med. Chem. 2005, 5, 127-145.
Barr, F. A.; Silljé, H. H. W.; Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell. Biol. 2004, 5, 429-440.
Zhou, Q.; Bai, M.; Su, Y. Effect of antisense RNA targeting polo-like kinase 1 on cell cycle and proliferation in A549 cells. Chin. Med. J. 2004, 117, 1642-1649.
Takagi, M.; Honmura, T.; Watanabe, S.; Yamaguchi, R.; Nogawa, M.; Nishimura, I.; Katoh, F.; Matsuda, M.; Hidaka, H. In vivo antitumor activity of a novel sulfonamide, HMN-214, against human tumor xenografts in mice and the spectrum of cytotoxicity of its active metabolite, HMN-176. Invest. New Drugs 2003, 21, 387-399.
Sausville, E. A. Aurora kinases dawn as cancer drug targets. Nat. Med. 2004, 10, 262-267.
Andrews, P. D.; Knatko, E.; Moore, W. J.; Swedlow, J. R. Mitotic mechanics: the auroras come into view. Curr. Opin. Cell. Biol. 2003, 15, 672-683.
Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Ajose-Adeogun, A. O.; Nakayama, T.; Graham, J. A.; Demur, C.; Hercend, T.; Diu-Hercend, A.; Su, M.; Golec, J. M.; Miller, K. M. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 2004, 10, 262-267.
Dittrich, C.; Dumez, H.; Calvert, H.; Hanauske, A.; Faber, M.; Wanders, J.; Yule, M.; Ravic, M.; Fumoleau, P. Phase I and pharmacokinetic study of E7070, a chloroindolyl-sulfonamide anticancer agent, administered on a weekly schedule to patients with solid tumors. Clin. Cancer Res. 2003, 9, 5195-5204.
Dupont, J.; Bienvenu, B.; Aghajanian, C.; Pezzulli, S.; Sabbatini, P.; Vongphrachanh, P.; Chang, C.; Perkell, C.; Ng, K.; Passe, S.; Breimer, L.; Zhi, J.; DeMario, M.; Spriggs, D.; Soignet, S. L. Phase I and pharmacokinetic study of the novel oral cell-cycle inhibitor Ro 31-7453 in patients with advanced solid tumors. J. Clin. Oncol. 2004, 22, 3366-3374.
Drews, J. Drug discovery: a historical perspective. Science 2000, 287, 1960-1964.
Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Anticancer and antiviral sulfonamides. Curr. Med. Chem. 2003, 10, 925-953.
Yoshino, H.; Ueda, N.; Niijima J.; Sugumi, H.; Kotake, Y,; Koyanagi, N.; Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagasu, T.; Tsukahara, K.; Iijima, A.; Kitoh, K. Novel sulfonamides as potential, systemically active antitumor agents. J. Med. Chem. 1992, 35, 2496-2497.
Gwaltney, S. L.; Imade H. M.; Li, Q.; Gehrke, L.; Credo, R. B.; Warner, R. B.; Lee, J. Y.; Kovar, P.; Frost, D.; Ng, S.-C. Sham, H. L. Novel sulfonate derivatives: potent antimitotic agents. Bioorg. Med. Chem. Lett. 2001, 11, 1671-1673.
Yokoi, A.; Kuromitsu, J.; Kawai, T.; Nagasu, T.; Sugi, N. H.; Yoshimatsu, K.; Yoshino, H.; Owa, T. Profiling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol. Cancer Ther. 2002, 1, 275-286.
Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 1999, 42, 3789-3799.
Yamamoto, K.; Noda, K.; Yoshimura, A.; Fukuoka, M.; Furuse, K.; Niitani, H. Phase I study of E7010. Cancer Chemother. Pharmacol. 1998, 42, 127-134.
Ozawa, Y.; Sugi1, N. H.; Nagasu, T.; Owa, T.; Watanabe, T.; Koyanagi, N.; Yoshino, H.; Kitoh, K.; Yoshimatsu, K. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur. J. Cancer 2001, 37, 2275-2282.
Kesteren, C. V.; Beijnen1, J. H.; Schellens, J. H. M. E7070: a novel synthetic sulfonamide targeting the cell cycle progression for the treatment of cancer. Anticancer Drugs 2002, 13, 989-997.
Casini, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr. Cancer Drug Targets 2002, 2, 55-75.
Chen, K.-Y. (陳冠妤). Design and synthesis of benzenesulfonamide derivatives as potential cell cycle targeting inhibitors. MS thesis, National Taiwan University, Taipei, Taiwan, R.O.C., 2001.
Cheng, C. C. Structural aspects of antineoplastic agents –a new approach. Prog. Med. Chem. 1988, 25, 35-83.
Wall, M. E.; Wanai, M. C.; Cook, C. E.; Palmer, K. H.; Mcphail, A. T.; Sim, G. A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitors from Camptotheca acuminate. J. Am. Chem. Soc. 1966, 88, 3888-3890.
Woodward, R. B.; Iacobucci, G. A.; Hochstein, F. A. The synthesis of ellipticine. J. Am. Chem. Soc. 1959, 81, 4434-4435.
Atwell, G. J.; Bos, C. D.; Baguley, B. C.; Denny, W. A. Potential antitumor agents. 56. “Minimal” DNA-intercalating ligands as antitumor drugs: phenylquinoline-8-carboxamides. J. Med. Chem. 1988, 31, 1048-1052.
Mikata, Y.; Yokoyama, M.; Ogura, S.-I.; Okura, I.; Kawasaki, M.; Maeda, M.; Yano, S. Effect of side chain location in (2-aminoethyl)-aminomethyl-2-phenylquinolines as antitumor agents. Bioorg. Med. Chem. Lett. 1998, 8, 1243-1248.
Glichrist, T. L. Heterocyclic Chemistry, 2nd ed; Longman Scientific and Technical: England, 1992; pp 153-156.
Stanforth, S. P. Catalytic cross-coupling reactions in biaryl synthesis. Tetrahedron 1998, 54, 263-303.
Miyaura N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds Chem. Rev. 1995, 95, 2457-2483.
Case, F. H.; Sasin, R. Substituted 1,10-phenanthrolines. VIII. 2- and 3-phenyl derivatives. J. Org. Chem. 1955, 20, 1330-1336.
Stauffer, S. R.; Huang, Y.; Coletta, C. J.; Tedesco, R.; Katzenellenbogen, J. A. Estrogen pyrazoles: defining the pyrazole core structure and the orientation of substituents in the ligand binding pocket of the estrogen receptor. Bioorg. Med. Chem. 2001, 9, 141-150.
Elderfield, R. C.; Gensler, W. J.; Bembry, T. H.; Williamson, T. A.; Weisl, H. Synthesis of simple 2-phenyl-8-aminoquinoline derivatives. J. Am. Chem. Soc. 1946, 68, 1589-1591.
Hauser, C. R.; Bloom, M. S.; Breslow, D. S.; Adams, J. T.; Amore, S. T.; Weiss, M. J. Synthesis of antimalarials. VII. Synthesis of certain 8-aminoquinolines. J. Am. Chem. Soc. 1946, 68, 1544-1546.
Gershon, H.; Clarke, D. D. Improved syntheses of some monochloro- and monobromo-8-quinolinols. Monatsh. Chem. 1991, 122, 935-941.
Qian, Y.; Marugan, J. J.; Fossum, R. D.; Vogt, A.; Sebti, S. M.; Hamilton, A. D. Probing the hydrophobic pocket of farnesyltransferase: aromatic substitution of CAAX peptidomimetics leads to highly potent inhibitors. Bioorg. Med. Chem. 1999, 7, 3011-3024.
Karig, G.; Spencer, J. A.; Gallagher, T. Directed deprotonation-transmetalation as a route to substituted pyridines. Org. Lett. 2001, 3, 835-838.
Fenger, I.; Drian, C. L. Reusable polymer-supported palladium catalysts: an alternative to tetrakis(triphenylphosphine)palladium in the Suzuki cross-coupling reaction. Tetrahedron Lett. 1998, 39, 4287-4290.
Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Cai, D.; Larsen, R. D. Synthesis of 3-pyridylboronic acid and its pinacol ester. Application of 3-pyridylboronic acid in Suzuki coupling to prepare 3-pyridin-3-ylquinoline. In The Organic Syntheses, Vol. 81; Danheiser, R. L. ed.; John Wiley & Sons, Inc.: New York, 2004; pp 89-97.
Dai, W. M.; Li, Y.; Zhang, Y.; Lai, K. W.; Wu, J. A novel class of amide-derived air-stable P,O-ligands for Suzuki cross-coupling at low catalyst loading. Tetrahedron Lett. 2004, 45, 1999-2001.
Roy, B. C.; Kar, G. K.; Ray, J. K. A simple and new synthetic method for the preparation of 2-phenyl-6-substituted quinolines. Synth. Commun. 1993, 23, 1959-1965.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳清山、林天祐(民90)。績效責任。教育研究月刊,83,139-140。
2. 吳明清(民91)。促進教師專業發展的策略。理論與政策,16(1),99-113。
3. 呂錘卿、林生傳(民90)。國民小學教師專業成長指標及現況之研究。教育學刊,17,45-64。
4. 李奉儒(民92)。我國中小學教師在職進修型態與方式之調查研究。比較教育,53,1-27。
5. 吳清山(民93)。提昇教師素質之探究。教育研究月刊,127,5-17。
6. 湯誌龍(民90)。澳洲維多利亞省中小學教師評鑑制度之研究。南港高工學報,19,9-33。
7. 張德銳(民81)。教師評鑑與教師專業成長。國教世紀,28,50-54。
8. 廖春文、俞國華(民91)。國民小學教師知識管理與專業成長之研究。國民教育研究集刊,10,63-90。
9. 楊深坑、楊銀興、周蓮清、黃淑玲、黃嘉莉(民91)。我國中小學教師在職進修制度規劃之研究。教育研究集刊,48-2,113-156。
10. 簡茂發、李虎雄、黃長司、彭森明、吳清山、吳明清、毛連塭、林來發、黃瑞榮、張敏雪等人 (民86)。中小學教師應具備的基本素質。教育研究資訊,5(3),1-13。
11. 潘慧玲(民88a)。學校效能研究領域的發展。教育研究集刊,43,77-102。
12. 潘慧玲(民88b)。學校效能相關概念的釐析。教育研究資訊,7(5),138-153。
13. 饒見維(民90)。九年一貫課程與教師專業角色的省思。教師天地,113,7-13。