|
Information received from the Internet Homepages of the Department of Health, Taiwan, R.O.C.(http://www.doh.gov.tw). Eckhardt, S. Recent progress in the development of anticancer agents. Curr. Med. Chem. Anti-Canc. Agents 2002, 2, 419-439. Nam, N.-H.; Parang, K. Current targets for anticancer drug discovery. Curr. Drug Targets 2003, 4, 159-179. Sridhar, S. S.; Shepherd, F. A. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer 2003, 42, Suppl 1:S81-91. Rosenbaum, E.; Zahurak, M.; Sinibaldi, V.; Carducci, M. A.; Pili, R.; Laufer, M.; DeWeese, T. L.; Eisenberger, M. A. Marimastat in the treatment of patients with biochemically relapsed prostate cancer: a prospective randomized, double-blind, phase I/II trial. Clin. Cancer Res. 2005, 11, 4437-4443. Van Veldhuizen, P. J.; Faulkner, J. R.; Lara Jr, P. N.; Gumerlock, P. H.; Goodwin, J. W.; Dakhil, S. R.; Gross, H. M.; Flanigan, R. C.; Crawford, E. D. A phase II study of flavopiridol in patients with advanced renal cell carcinoma: results of Southwest Oncology Group Trial 0109. Cancer Chemother. Pharmacol. 2005, 56, 39-45. Fuse, E.; Kuwabara, T.; Sparreboom, A.; Sausville, E. A.; Figg, W. D. Review of UCN-01 development: a lesson in the importance of clinical pharmacology. J. Clin. Pharmacol. 2005, 45, 394-403. Badros, A. Z.; Goloubeva, O.; Rapoport, A. P.; Ratterree, B.; Gahres, N.; Meisenberg, B.; Takebe, N.; Heyman, M.; Zwiebel, J.; Streicher, H.; Gocke, C. D.; Tomic, D.; Flaws, J. A.; Zhang, B.; Fenton, R. G. Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J. Clin. Oncol. 2005, 23, 4089-4099. Kelly, W. K.; O''Connor, O. A.; Krug, L. M.; Chiao, J. H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J. P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P. A.; Scher, H.; Richon, V. M. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 2005, 23, 3923-3931. Papadimitrakopoulou, V.; Agelaki, S.; Tran, H. T.; Kies, M.; Gagel, R.; Zinner, R.; Kim, E.; Ayers, G.; Wright, J.; Khuri, F. Phase I study of the farnesyltransferase inhibitor BMS-214662 given weekly in patients with solid tumors. Clin. Cancer Res. 2005, 11, 4151-4159. Schmidli, H.; Peng, B.; Riviere, G. J.; Capdeville, R.; Hensley, M.; Gathmann, I.; Bolton, A. E.; Racine-Poon, A. Population pharmacokinetics of imatinib mesylate in patients with chronic-phase chronic myeloid leukaemia: results of a phase III study. Br. J. Clin. Pharmacol. 2005, 60, 35-44. Pao, W.; Miller, V. A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol. 2005, 23, 2556-2568. Information received from the Internet Homepages of the Nobelprize.org (http://nobelprize.org). Golias, C. H.; Charalabopoulos, A.; Charalabopoulos, K. Cell proliferation and cell cycle control: a mini review. Int. J. Clin. Pract. 2004, 58, 1134-1141. Fischer, P. M.; Glover, D. M.; Lane, D. P. Targeting the cell cycle. Drug Disc. Today: Ther. Strat. 2004, 1, 417-423. Malumbres, M.; Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 2001, 1, 222-231. Brooks, G.; La Thangue, N. B. The cell cycle and drug discovery: the promise and the hope. Drug Disc. Today 1999, 4, 455-464. Gali-Muhtasib, H.; Bakkar, N. Modulating cell cycle: current applications and prospects for the future drug development. Curr. Cancer Drug Targets 2002, 2, 309-336. Hung, D. T.; Jamison, T. F.; Schreiber S. L. Understanding and controlling the cell cycle with natural products. Chem. Biol. 1996, 3, 623-639. Sherr, C. J. Cancer cell cycles. Science 1996, 274, 1672-1677. Vousden, K. H.; Prives, C. P53 and prognosis: new insights and further complexity. Cell 2005, 120, 7-10. Tokino, T.; Nakamura, Y. The role of p53-target genes in human cancer. Crit. Rev. Oncol. Hematol. 2000, 33, 1-6. Swanton, C. Cell-cycle targeted therapies. Lancet. Oncol. 2004, 5, 27-36. Slingerland, J.; Pagano, M. Regulation of the Cdk inhibitor p27 and its deregulation in cancer. J. Cell. Physiol. 2000, 183, 10-17. Senderowicz, A. M. Targeting cell cycle and apoptosis for the treatment of human malignancis. Curr. Opin. Cell Biol. 2004, 16, 670-678. Welburn, J. P.I.; Endicott, J. A. Inhibition of the cell cycle with chemical inhibitors: a targeted approach. Semin. Cell Dev. Biol. 2005, 16, 369-381. Zhou, B.-B. S.; Bartek, J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nature Rev. Cancer 2004, 4, 1-10. Kawabe, T. G2 checkpoint abrogators as anticancer drugs. Mol. Cancer Ther. 2004, 3, 513-519. Wood, K. W.; Cornwell, W. D.; Jackson, J. R. Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol. 2001, 1, 370-377. Yan, Y.; Sardana, V.; Xu, B.; Homnick, C.; Halczenko, W.; Buser, C. A.; Schaber, M.; Hartman, G. D.; Huber, H. E.; Kuo, L. C. Inhibition of a mitotic motor protein: where, how, and conformational consequences. J. Mol. Biol. 2004, 335, 547-554. Sakowicz, R.; Finer, J. T.; Beraud, C.; Crompton, A.; Lewis, E.; Fritsch, A.; Lee, Y.; Mak, J.; Moody, R.; Turincio, R.; Chabala, J. C.; Gonzales, P.; Roth, S.; Weitman, S.; Wood, K. W. Antitumor activity of a kinesin inhibitor. Cancer Res. 2004, 1, 3276-3280. Bergnes, G.; Brejc, K.; Belmont, L. Mitotic kinesins: prospects for antimitotic drug discovery. Curr. Top. Med. Chem. 2005, 5, 127-145. Barr, F. A.; Silljé, H. H. W.; Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell. Biol. 2004, 5, 429-440. Zhou, Q.; Bai, M.; Su, Y. Effect of antisense RNA targeting polo-like kinase 1 on cell cycle and proliferation in A549 cells. Chin. Med. J. 2004, 117, 1642-1649. Takagi, M.; Honmura, T.; Watanabe, S.; Yamaguchi, R.; Nogawa, M.; Nishimura, I.; Katoh, F.; Matsuda, M.; Hidaka, H. In vivo antitumor activity of a novel sulfonamide, HMN-214, against human tumor xenografts in mice and the spectrum of cytotoxicity of its active metabolite, HMN-176. Invest. New Drugs 2003, 21, 387-399. Sausville, E. A. Aurora kinases dawn as cancer drug targets. Nat. Med. 2004, 10, 262-267. Andrews, P. D.; Knatko, E.; Moore, W. J.; Swedlow, J. R. Mitotic mechanics: the auroras come into view. Curr. Opin. Cell. Biol. 2003, 15, 672-683. Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Ajose-Adeogun, A. O.; Nakayama, T.; Graham, J. A.; Demur, C.; Hercend, T.; Diu-Hercend, A.; Su, M.; Golec, J. M.; Miller, K. M. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 2004, 10, 262-267. Dittrich, C.; Dumez, H.; Calvert, H.; Hanauske, A.; Faber, M.; Wanders, J.; Yule, M.; Ravic, M.; Fumoleau, P. Phase I and pharmacokinetic study of E7070, a chloroindolyl-sulfonamide anticancer agent, administered on a weekly schedule to patients with solid tumors. Clin. Cancer Res. 2003, 9, 5195-5204. Dupont, J.; Bienvenu, B.; Aghajanian, C.; Pezzulli, S.; Sabbatini, P.; Vongphrachanh, P.; Chang, C.; Perkell, C.; Ng, K.; Passe, S.; Breimer, L.; Zhi, J.; DeMario, M.; Spriggs, D.; Soignet, S. L. Phase I and pharmacokinetic study of the novel oral cell-cycle inhibitor Ro 31-7453 in patients with advanced solid tumors. J. Clin. Oncol. 2004, 22, 3366-3374. Drews, J. Drug discovery: a historical perspective. Science 2000, 287, 1960-1964. Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Anticancer and antiviral sulfonamides. Curr. Med. Chem. 2003, 10, 925-953. Yoshino, H.; Ueda, N.; Niijima J.; Sugumi, H.; Kotake, Y,; Koyanagi, N.; Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagasu, T.; Tsukahara, K.; Iijima, A.; Kitoh, K. Novel sulfonamides as potential, systemically active antitumor agents. J. Med. Chem. 1992, 35, 2496-2497. Gwaltney, S. L.; Imade H. M.; Li, Q.; Gehrke, L.; Credo, R. B.; Warner, R. B.; Lee, J. Y.; Kovar, P.; Frost, D.; Ng, S.-C. Sham, H. L. Novel sulfonate derivatives: potent antimitotic agents. Bioorg. Med. Chem. Lett. 2001, 11, 1671-1673. Yokoi, A.; Kuromitsu, J.; Kawai, T.; Nagasu, T.; Sugi, N. H.; Yoshimatsu, K.; Yoshino, H.; Owa, T. Profiling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol. Cancer Ther. 2002, 1, 275-286. Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 1999, 42, 3789-3799. Yamamoto, K.; Noda, K.; Yoshimura, A.; Fukuoka, M.; Furuse, K.; Niitani, H. Phase I study of E7010. Cancer Chemother. Pharmacol. 1998, 42, 127-134. Ozawa, Y.; Sugi1, N. H.; Nagasu, T.; Owa, T.; Watanabe, T.; Koyanagi, N.; Yoshino, H.; Kitoh, K.; Yoshimatsu, K. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur. J. Cancer 2001, 37, 2275-2282. Kesteren, C. V.; Beijnen1, J. H.; Schellens, J. H. M. E7070: a novel synthetic sulfonamide targeting the cell cycle progression for the treatment of cancer. Anticancer Drugs 2002, 13, 989-997. Casini, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr. Cancer Drug Targets 2002, 2, 55-75. Chen, K.-Y. (陳冠妤). Design and synthesis of benzenesulfonamide derivatives as potential cell cycle targeting inhibitors. MS thesis, National Taiwan University, Taipei, Taiwan, R.O.C., 2001. Cheng, C. C. Structural aspects of antineoplastic agents –a new approach. Prog. Med. Chem. 1988, 25, 35-83. Wall, M. E.; Wanai, M. C.; Cook, C. E.; Palmer, K. H.; Mcphail, A. T.; Sim, G. A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitors from Camptotheca acuminate. J. Am. Chem. Soc. 1966, 88, 3888-3890. Woodward, R. B.; Iacobucci, G. A.; Hochstein, F. A. The synthesis of ellipticine. J. Am. Chem. Soc. 1959, 81, 4434-4435. Atwell, G. J.; Bos, C. D.; Baguley, B. C.; Denny, W. A. Potential antitumor agents. 56. “Minimal” DNA-intercalating ligands as antitumor drugs: phenylquinoline-8-carboxamides. J. Med. Chem. 1988, 31, 1048-1052. Mikata, Y.; Yokoyama, M.; Ogura, S.-I.; Okura, I.; Kawasaki, M.; Maeda, M.; Yano, S. Effect of side chain location in (2-aminoethyl)-aminomethyl-2-phenylquinolines as antitumor agents. Bioorg. Med. Chem. Lett. 1998, 8, 1243-1248. Glichrist, T. L. Heterocyclic Chemistry, 2nd ed; Longman Scientific and Technical: England, 1992; pp 153-156. Stanforth, S. P. Catalytic cross-coupling reactions in biaryl synthesis. Tetrahedron 1998, 54, 263-303. Miyaura N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds Chem. Rev. 1995, 95, 2457-2483. Case, F. H.; Sasin, R. Substituted 1,10-phenanthrolines. VIII. 2- and 3-phenyl derivatives. J. Org. Chem. 1955, 20, 1330-1336. Stauffer, S. R.; Huang, Y.; Coletta, C. J.; Tedesco, R.; Katzenellenbogen, J. A. Estrogen pyrazoles: defining the pyrazole core structure and the orientation of substituents in the ligand binding pocket of the estrogen receptor. Bioorg. Med. Chem. 2001, 9, 141-150. Elderfield, R. C.; Gensler, W. J.; Bembry, T. H.; Williamson, T. A.; Weisl, H. Synthesis of simple 2-phenyl-8-aminoquinoline derivatives. J. Am. Chem. Soc. 1946, 68, 1589-1591. Hauser, C. R.; Bloom, M. S.; Breslow, D. S.; Adams, J. T.; Amore, S. T.; Weiss, M. J. Synthesis of antimalarials. VII. Synthesis of certain 8-aminoquinolines. J. Am. Chem. Soc. 1946, 68, 1544-1546. Gershon, H.; Clarke, D. D. Improved syntheses of some monochloro- and monobromo-8-quinolinols. Monatsh. Chem. 1991, 122, 935-941. Qian, Y.; Marugan, J. J.; Fossum, R. D.; Vogt, A.; Sebti, S. M.; Hamilton, A. D. Probing the hydrophobic pocket of farnesyltransferase: aromatic substitution of CAAX peptidomimetics leads to highly potent inhibitors. Bioorg. Med. Chem. 1999, 7, 3011-3024. Karig, G.; Spencer, J. A.; Gallagher, T. Directed deprotonation-transmetalation as a route to substituted pyridines. Org. Lett. 2001, 3, 835-838. Fenger, I.; Drian, C. L. Reusable polymer-supported palladium catalysts: an alternative to tetrakis(triphenylphosphine)palladium in the Suzuki cross-coupling reaction. Tetrahedron Lett. 1998, 39, 4287-4290. Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Cai, D.; Larsen, R. D. Synthesis of 3-pyridylboronic acid and its pinacol ester. Application of 3-pyridylboronic acid in Suzuki coupling to prepare 3-pyridin-3-ylquinoline. In The Organic Syntheses, Vol. 81; Danheiser, R. L. ed.; John Wiley & Sons, Inc.: New York, 2004; pp 89-97. Dai, W. M.; Li, Y.; Zhang, Y.; Lai, K. W.; Wu, J. A novel class of amide-derived air-stable P,O-ligands for Suzuki cross-coupling at low catalyst loading. Tetrahedron Lett. 2004, 45, 1999-2001. Roy, B. C.; Kar, G. K.; Ray, J. K. A simple and new synthetic method for the preparation of 2-phenyl-6-substituted quinolines. Synth. Commun. 1993, 23, 1959-1965.
|