|
References 1R. C. Reed, The superalloys: fundamentals and applications: Cambridge University Press 2006. 2R. Bowman. Superalloys: A Primer and History. Available: http://www.tms.org/Meetings/Specialty/Superalloys2000/SuperalloysHistory.html 3(2010). Nickel-Based Superalloys: Part Two. Available: http://keytometals.com/page.aspx?ID=CheckArticle&site=ktn&NM=236 4G. L. Erickson, et al, The development and application of CMSX-10, Superalloys 1996, pp. 35-44, 1996. 5X. G. Liu, L. Wang, L. H. Lou, and J. Zhang, Effect of Mo Addition on Microstructural Characteristics in a Re-containing Single Crystal Superalloy, Journal of Materials Science & Technology, vol. 31, pp. 143-147, 2// 2015. 6M.-H. Tsai and J.-W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters, vol. 2, pp. 107-123, 2014/07/03 2014. 7J.-W. Yeh, HIGH-ENTROPY MULTIELEMENT ALLOYS, ed, 2002. 8J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials, vol. 6, pp. 299-303, 2004. 9B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, vol. 375–377, pp. 213-218, 7// 2004. 10F. Otto, Y. Yang, H. Bei, and E. P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia, vol. 61, pp. 2628-2638, 4// 2013. 11Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Advanced Engineering Materials, vol. 10, pp. 534-538, 2008. 12X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics, vol. 132, pp. 233-238, 2/15/ 2012. 13S. Guo, C. Ng, J. Lu, and C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of Applied Physics, vol. 109, 2011. 14M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and C. P. Tu. 2006). Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0-2.0) high-entropy alloys. vol. 47(no5), 1395-1401. 15C.-W. Tsai, M.-H. Tsai, J.-W. Yeh, and C.-C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, Journal of Alloys and Compounds, vol. 490, pp. 160-165, 2/4/ 2010. 16O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, Refractory high-entropy alloys, Intermetallics, vol. 18, pp. 1758-1765, 9// 2010. 17O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, vol. 19, pp. 698-706, 5// 2011. 18O. N. Senkov and C. F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Materials Science and Engineering: A, vol. 529, pp. 311-320, 11/25/ 2011. 19O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds, vol. 509, pp. 6043-6048, 5/19/ 2011. 20O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, and C. F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, Journal of Materials Science, vol. 47, pp. 4062-4074, 2012/05/01 2012. 21O. N. Senkov, S. V. Senkova, C. Woodward, and D. B. Miracle, Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis, Acta Materialia, vol. 61, pp. 1545-1557, 3// 2013. 22O. Senkov, F. Zhang, and J. Miller, Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data, Entropy, vol. 15, pp. 3796-3809, 2013. 23X. Yang, Y. Zhang, and P. K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys, Procedia Engineering, vol. 36, pp. 292-298, // 2012. 24A. J. Zaddach, C. Niu, C. C. Koch, and D. L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, JOM, vol. 65, pp. 1780-1789, 2013/12/01 2013. 25F. Tian, L. K. Varga, N. Chen, L. Delczeg, and L. Vitos, Ab initio investigation of high-entropy alloys of 3d elements, Physical Review B, vol. 87, p. 075144, 02/26/ 2013. 26F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, An understanding of high entropy alloys from phase diagram calculations, Calphad, vol. 45, pp. 1-10, 6// 2014. 27P. J. Spencer, A brief history of CALPHAD, Calphad, vol. 32, pp. 1-8, 3// 2008. 28J. J. V. Laar, Z. Phys. Chem, vol. 63, p. 216, 1908. 29H. B. L. Kaufman, Computer Calculation of Phase Diagrams, Academic Press, New York, 1970. 30H. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method: Cambridge University Press, 2007. 31Z.-K. Liu, First-Principles Calculations and CALPHAD Modeling of Thermodynamics, Journal of Phase Equilibria and Diffusion, vol. 30, pp. 517-534, 2009/10/01 2009. 32J. G. Lee, Computational Materials Science: An Introduction: Taylor & Francis, 2011. 33D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 89-110, 1928. 34V. Fock, Z. Phys. Chem, pp. 126-148, 1930. 35A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Special quasirandom structures, Physical Review Letters, vol. 65, pp. 353-356, 07/16/ 1990. 36H. K. Hanlei Zhanga, Jieren Yanga, Dong Huangb, Hai Nanb, Jinshan Lia, Microstructure evolution and tensile properties of Ti–6.5Al–2Zr–Mo–V alloy processed with thermo hydrogen treatment, Materials Science and Engineering: A, vol. 619, pp. 274-280, 2014. 37J. H. Zhiqiang Li, Weijing Li, Like Pan, Low cycle fatigue behavior of Cr–Mo–V low alloy steel used for railway brake discs, Materials & Design, vol. 56, pp. 146–157, 2014. 38Y. V. E. V.V. Baron, E.M. Savitskii, Structure and Properties of Alloys of the Vanadium-Molybdenum System, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, pp. 36-40, 1958. 39K. N. I. V.V. Baron, E.M. Savitskii, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Met. Topl., pp. 143-149, 1960. 40Rudy, Ternary phase equilibria in transition metal–boron–carbon–silicon systems, Part V compendium of phase diagram data, Technical Report AFML-TR-64-2, Air Force Materials Laboratory, Ohio, 1969, Transition Metal Phase Diagram, 1969. 41V. I. V. Yu.A. Kocherzhinsky, O.G. Kulik, Construction of the melting diagrams of some mo-containing systems and the metastable melting diagram of the CR-C system using DTA-technique up to 3000 K, Thermochimica Acta, vol. 93, pp. 649-652, 1985. 42V. G. A. L.I. Erokhin, V.G. Abramova, Determination of Chemical Potentials and Gibbs Free Energies in Vanadium-Niobium, Vanadium-Molybdenum and Molybdenum-Tungsten Alloys, Diffuz. Protessy Met. , pp. 95-100, 1987. 43L. I. Erokhin, Activities and Activity Coefficients in Vanadium-Niobium, Vanadium-Molybdenum and Molybdenum-Tungsten Alloys Diffuz. Protessy Met. , pp. 31-36, 1987. 44L. I. Erokhin, Activities and Activity Coefficients in Vanadium-Niobium, Vanadium-Molybdenum and Molybdenum-Tungsten Alloys, Diffuz. Protessy Met., pp. 155-161, 1989. 45L. Brewer, Molybdenum: physico-chemical properties of its compounds and alloys: International Atomic Energy Agency, 1980. 46F. Zheng, B. B. Argent, and J. F. Smith, Thermodynamic computation of the Mo-V binary phase diagram, Journal of Phase Equilibria, vol. 20, pp. 370-372, 1999/07/01 1999. 47J. F. Smith, The mo-v system (molybdenum-vanadium), Journal of Phase Equilibria, vol. 13, pp. 50-53, 1992/02/01 1992. 48J. Bratberg and K. Frisk, A thermodynamic analysis of the Mo-V and Mo-V-C system, Calphad, vol. 26, pp. 459–476, 2002. 49A. T. D. R.H. Davies, S.M. Hodson, J.A. Gisby, N.J. Pugh, T.L. Barry, T.G. Chart, ,in: F.H. Hayes (Ed.), MTDATA-The NPL Databank for Metallurgical ThermochemistryThe Institute of Metals, London (1991) User Aspects of Phase Diagrams 1991. 50C. K. Gupta, Materials in Nuclear Energy Applications, CRC Press, Inc, Boca Raton, FL, vol. II, 1989. 51R. E. Smallwood, TZM Moly Alloy. ASTM special technical publication 849: Refractory metals and their industrial applications: a symposium.: ASTM International., 1984. 52D. J. M. R.F. Domagala, M. Hansen, Trans. AIME, vol. 197, pp. 73-79, 1953. 53A. C. S. V.N. Svechnikov, Phase Transformation, Nauk. Dumka, Kiev pp. 123-128, 1967. 54S. P. Garg and R. J. Ackermann, The high temperature phase diagrams for zirconium-molybdenum and hafnium-molybdenum, Metallurgical Transactions A, vol. 8, pp. 239-244, 1977/02/01 1977. 55J. L. Ham, Trans. ASME, vol. 73, pp. 723-732, 1951. 56B. G. P. A.M. Zakharov, Yu.A. Belykh, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall, vol. 5, pp. 126-128, 1970. 57S. B. Prima, Diagramy sostoyaniya v materialoevedenie, Nauk. Dunka, Kiev pp. 30-37, 1984. 58Y. J. Bhatt, L. Kumar, R. V. Patil, G. B. Kale, and S. P. Garg, Diffusion studies in Hf-Mo, Zr-Mo, Cr-Nb, Cr-Ta and Th-Re systems above 1900 K, Journal of Alloys and Compounds, vol. 302, pp. 177-186, 2000. 59D. O. Northwood, The stability of the β phase in Zr-3wt.%Mo and Zr-3wt.%Mo-1wt.%Al alloys, Journal of The Less-Common Metals, vol. 57, pp. 231-235, 1978. 60H. D. K. M. Hansen, D.J. McPherson, Trans. ASM, vol. 44, pp. 518-539, 1952. 61O. v. G. O. Kubaschewski, Zirconium: Physico–Chemical Properties of its Compounds and Alloys, O. Kubaschewski (Ed.) Atomic Energy Review. IAEA, Vienna, Austria (special issue, No. 6), pp. 96-97, 1976. 62F. L. Von G. Brauer, Plansee Proceedings 1964 Metallwerk Plansee AG, Reutle/Tirol pp. 340-350, 1965. 63S. M. B. G.B. Samsonov, A.A. Rogozinskaya, Izv. Vyssh. Uchebn. Zaved. Tsvetn Metall, vol. 15, pp. 118-122, 1972. 64R. K. V.E. Pipitz, Z. Metallkd, vol. 46, p. 3, 1955. 65A. V. K. V.V. Petkov, Dokl. Akad. Nauk Ukrain. S (A), vol. 8, pp. 751-753, 1972. 66Ö. Rapp, Superconductivity and lattice parameters in the zirconium-molybdenum, zirconium-tungsten, hafnium-molybdenum and hafnium-tungsten alloy systems, Journal of The Less-Common Metals, vol. 21, pp. 27-44, 1970. 67M. Zinkevich and N. Mattern, Thermodynamic assessment of the Mo-Zr system, Journal of Phase Equilibria, vol. 23, pp. 156-162, 2002/03/01 2002. 68R. Jerlerud Pérez and B. Sundman, Thermodynamic assessment of the Mo–Zr binary phase diagram, Calphad, vol. 27, pp. 253-262, 9// 2003. 69H. L. Lukas, E. T. Henig, and B. Zimmermann, Optimization of phase diagrams by a least squares method using simultaneously different types of data, Calphad, vol. 1, pp. 225-236, // 1977. 70M. Hillert, The compound energy formalism, Journal of Alloys and Compounds, vol. 320, pp. 161-176, 5/24/ 2001. 71W. Cao, S. L. Chen, F. Zhang, K. Wu, Y. Yang, Y. A. Chang, et al., PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad, vol. 33, pp. 328-342, 6// 2009. 72A. T. Dinsdale, SGTE data for pure elements, Calphad, vol. 15, pp. 317-425, 10// 1991. 73G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, vol. 6, pp. 15-50, 1996. 74J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol. 77, pp. 3865-3868, 10/28/ 1996. 75G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol. 59, pp. 1758-1775, 01/15/ 1999. 76H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol. 13, pp. 5188-5192, 06/15/ 1976. 77C. Jiang, C. Wolverton, J. Sofo, L.-Q. Chen, and Z.-K. Liu, First-principles study of binary bcc alloys using special quasirandom structures, Physical Review B, vol. 69, p. 214202, 06/28/ 2004. 78D. Shin, R. Arróyave, Z.-K. Liu, and A. Van de Walle, Thermodynamic properties of binary hcp solution phases from special quasirandom structures, Physical Review B, vol. 74, p. 024204, 07/14/ 2006. 79C. Jiang, First-principles study of ternary bcc alloys using special quasi-random structures, Acta Materialia, vol. 57, pp. 4716-4726, 9// 2009. 80P.J.Spencer, B. S. R.J.Perez, Ed., ed. 81X.-Q. Chen, W. Wolf, R. Podloucky, and P. Rogl, Comment on “Enthalpies of formation of binary Laves phases [Intermetallics, 10 (2002) 579–595], Intermetallics, vol. 12, pp. 59-62, 1// 2004. 82P. A. Korzhavyi, B. S. R.J.Perez, Ed., ed. 83S. V. Meschel, X. Q. Chen, O. J. Kleppa, and P. Nash, The standard enthalpies of formation of some intermetallic compounds of early 4d and 5d transition metals by high temperature direct synthesis calorimetry, Calphad, vol. 33, pp. 55-62, 3// 2009. 84J. T. Williams, Vanadium–Zirconium alloy system: titanium binary alloys Tansactions on AIME, vol. 203, pp. 345–350, 1955. 85A. Y. W. Rostoker, A survey of vanadium binary systems, Transactions on ASM, vol. 46, pp. 1136–1167, 1954. 86T. d. f. l. m. a. COST507, in: I. Ansara, A.T. Dinsdale, M.H. Rand editors, Luxembourg: Office for Official Publications of the European Communities; 1998, pp. 303-304. 87C. Servant, Thermodynamic assessments of the phase diagrams of the hafnium-vanadium and vanadium-zirconium systems, Journal of Phase Equilibria and Diffusion, vol. 26, pp. 39-49, 2005/02/01 2005. 88X.-S. Zhao, G.-H. Yuan, M.-Y. Yao, Q. Yue, and J.-Y. Shen, First-principles calculations and thermodynamic modeling of the V–Zr system, Calphad, vol. 36, pp. 163-168, 3// 2012. 89J. Štrof, J. Pavlů, U. D. Wdowik, J. Buršík, M. Šob, and J. Vřešťál, Laves phases in the V–Zr system below room temperature: Stability analysis using ab initio results and phase diagram, Calphad, vol. 44, pp. 62-69, 3// 2014. 90H. O. T.B. Massalski and J. F. S. (Ed.), Binary Alloy Phase Diagrams, V–Zr (Vanadium–Zirconium), ASM International pp. 3528–3531 1990. 91Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Physical Review B, vol. 65, p. 104104, 02/13/ 2002. 92F. Tasnádi, M. Odén, and I. A. Abrikosov, Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence, Physical Review B, vol. 85, p. 144112, 04/20/ 2012. 93P. V. a. L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. Newbury, OH: ASTM International, 1991. 94S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang, S. Ganeshan, et al., First-principles calculations of pure elements: Equations of state and elastic stiffness constants, Computational Materials Science, vol. 48, pp. 813-826, 6// 2010. 95C. J. R. E. S. Fisher, Physical Review B, vol. 135, 1964. 96K. H. M. Born, Dynamical Theory of Crystal Lattices: Oxford University Press, 1988.
|