跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建宏
研究生(外文):Chien-Hung Chen
論文名稱:以隨機規劃與決策樹分析求解不確定需求之產能規劃問題
論文名稱(外文):Solving Capacity Planning with Demand Uncertainty by Stochastic Planning and Decision Tree Analysis
指導教授:洪一峯洪一峯引用關係
指導教授(外文):Yi-Feng Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:48
中文關鍵詞:產能規畫需求不確定隨機規劃決策樹分析
外文關鍵詞:capacity planningdemand uncertaintystochastic programmingdecision tree analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
產能規劃是生產決策者決定要有多少數量的機器設備來提供產能,生產所需數量的產品。由於產品需求的不確定性,使得產能規劃的工作更為艱難。本文針對多規劃時期下,多產品種類、多機器種類、不確定需求下之產能規劃問題以兩種方法求解並比較其結果。此兩種方法的目標式皆為欠貨成本加上機台購買成本之最小化,限制式則包含產能與預算的限制。
本論文把未來的需求模式化為以好幾套的需求劇本 (demand scenarios)所組成的集合,並對每一套劇本指定其發生機率。第一種方法將此問題模式化為隨機規劃模型並求解之。第二種方法將問題模式化為需求固定的混合整數規劃模型,接著,再將此模型配合決策樹的架構來模式化需求的不確定性並求解之。
本論文的實驗把兩種方法求得的成本,分別計算在不同需求劇本下與完美資訊期望值的差距百分比。實驗結果顯示,隨機規劃與完美資訊期望值在不同需求劇本下的差距較小,求解的時間也比決策樹分析方法快。
Capacity planning is the calculation of the required numbers of machines for production. Due to the demand uncertainty, capacity planning is becoming more and more difficult. This study focuses on multiple periods, multiple product types, multiple machine types, and demand uncertainty capacity planning problem, and uses two approaches to solve the problem. The object function of the approaches is to minimize the backorder cost and machines purchasing cost.
The first approach formulates the problem as stochastic programs. The model assumes there are several demand scenarios, and the probability of each scenario is known. The second approach formulates the same problem with known demand by mixed integer programs, and then uses decision tree to deal with the demand uncertainty.
Our experiment compared object values from stochastic programming and expected costs from decision tree analysis with the expected value with perfect information(EVwPI)under different numbers of scenario. According to the experiment results, the stochastic programming approach is superior to decision tree analysis.
麥姿穎 (2004), “應用決策樹分析求解隨機生產計劃問題”, 國立清華大學工業工程碩士論文.
Barahona, F., Bermon, S., Gunluk, O. and Hood, S. (2001) “Robust Capacity Planning in Semiconductor Manufacturing”, Research Report RC22196, IBM.
Baudin, M., Mehrotra, V., Tillis, B., Yeaman, D. and Hughes, R. (1992), “From spreadsheets to simulations: A comparison of analysis methods for IC manufacturing performance”, in Proc. 1992 IEEE/SEMI Int. Semiconductor Manufacturing Science Symp., pp. 94-99.
Beale, E. (1955), “On minimizing a convex function subject to linear inequalities”, Journal of the Royal Statistical Society, Vol. 17, pp. 173-184.
Bermon, S. and Hood, S. J. (1999), “Capacity Optimization Planning System (CAPS)”, Interfaces Vol. 29, No. 5, pp. 31-50.
Birge, J. R. (1997), “Stochastic programming computation and applications”, INFORMS Journal on Computing, Vol. 9, No. 2, pp. 111-133.
Christie, M. E. and Wu, S. D. (2002), “Semiconductor Capacity Planning: Stochastic Modeling and Computational Studies,” IIE Transactions, Vol. 34, pp. 131-43.
Clemen, R. T. (1996), Making Hard Decision: An Introduction to Decision Analysis, 2nd ed., Duxbury Press.
Coles S. and Rowley J. (1995), “Revisiting decision trees”, Management Decision, Vol. 33, No. 8, pp. 46-50.
CPLEX, (2001) Reference Manual, ILOG CPLEX 7.1.
Hood, S. J., Bermon, S. and Barahona, F. (2003), “Capacity Planning under Demand Uncertainty for Semiconductor Manufacturing”, IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 2, pp. 273-280.
Danzig, G. B. (1955), “Linear programming under uncertainty”, Management Science, Vol. 1, pp. 197-206.
Dupačová, J. (2002), “Applications of stochastic programming: achievements and questions”, European Journal of Operational Research, Vol. 140, pp. 281-290.
Fordyce, K. and Sullivan, G. (1994), “A dynamically generated rapid response capacity planning model for semiconductor fabrication facilities”, Impact of Emerging Technologies on Computer Science and Operations Research, Kluwer Publishing, Dordrecht, The Netherlands, pp. 103-127.
Hillier, F. S. and Lieberman, G. J. (2001), Introduction to Operations Research, 7th edition, McGraw-Hill, New York, NY, U.S.A..
http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/stochastic/
Krajewski, L. J. and Ritzman, L. P. (2001), Operations Management:Strategy and Analysis, 5th edition, Prentice Hall International, Inc.
Leachman, R. C. (1992), “Modeling Techniques for Automated Production Planning in Semiconductor Industry”, Res. Rep. ESRC 92-7/RAMP, 92-4, University of California, Berkeley.
Occhino, T. J. (2000), “Capacity Planning Model: The Important Inputs, Formulas, and Benefits”, IEEE/SEMI International Semiconductor Manufacturing Symposium, pp. 455-458.
Rajagopalan, S. and Swaminathan, J. M. (2000), “A coordinated production planning model with capacity expansion and inventory management”, Management Science, Vol. 47, No. 11, pp. 1562-1580.
Spence, A. M. and Welter, D. J. (1987), “Capacity planning of a photolithography work cell”, in Proc. IEEE Int. Conf. Robotics and Automation, pp. 702-708.
Stevenson, W. J. (1999), Production / Operations Management, 6th ed., Irwin, Boston.
Swaminathan, J. M. and Tayur, S. R. (1998), “Managing Broader Production Lines Through Delayed Differentiation Using Vanilla Boxes”, Management Science, Vol. 44, No. 12, pp. 161-172
Swaminathan, J.M. (2000), “Tool Capacity Planning for Semiconductor Fabrication Facilities under Demand Uncertainty”, European Journal of Operational Research, Vol. 120, No. 3, pp. 545-558.
Swaminathan, J. M. (2002), “Tool Procurement Planning for Wafer Fabrication Facilities: a Scenario-Based Approach”, IIE Transactions, Vol. 34, pp. 145-155.
Takriti, S., Birge, J. and Long, E. (1996), “A stochastic model for the unit commitment problem”, IEEE Trans. Power Syst., Vol. 11, pp. 1497-1508.
Thompson, S. D. and Davis W. J. (1990), “An Integrated Approach for Modeling Uncertainty in Aggregate Production Planning”, IEEE Transactions on System, Man, and Cybernetics, Vol. 20, pp. 1000-1012.
Uzsoy, R., Lee, C. and Martin-Vega L.A. (1992), “ A Review of Production Planning and Scheduling Models in the Semiconductor Industry. Part I : System Characteristic, Performance Evaluation and Production Planning ”, IIE Transactions Vol. 24, No.4, pp. 47-67.
Witte, (1996) J. D. “Using static capacity modeling techniques”, in Proc. IEEE/SEMI Advanced Semiconductor Manufacturing Conf. Workshop, pp. 31-35.
Yang, J. (2000), “An approach to determine appropriate fab development plans by taking space constraints and cost-effectiveness into consideration”, in Proc. 9th Int. Symp. Semiconductor Manufacturing, pp. 217-220.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊