跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家銘
研究生(外文):Chia-ming Hsu
論文名稱:有關無窮矩陣之項滿足某些二冪次遞迴公式的討論
論文名稱(外文):On infinite matrices whose entries satisfying certain dyadic recurrent formula
指導教授:何宗軒何宗軒引用關係
指導教授(外文):Mark C. Ho
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:22
中文關鍵詞:有界矩陣斜扥普立茲算子二冪次遞迴公式位移算子可分希爾伯特空間
外文關鍵詞:slant Toeplitz operatorshift operatorseparable Hilbert spacebounded matrixdyadic recurrent formula
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
設(b$_{i,j}$)是一個定義在 extit{ l}$^{2}$上的有界矩陣,$BbbT={zinBbb C:|z|=1}$,A是一個在L$^{2}(mathbb{T)}$上的有界矩陣滿足下列情形
1.$langle Az^{2j},z^{2i}
angle =sigma ^{-1}b_{ij}+|alpha
|^{2}sigma ^{-1}langle Az^{j},z^{i}
angle $

2.$langle Az^{2j},z^{2i-1}
angle =-alpha sigma
^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i}
angle $

3.$langle Az^{2j-1},z^{2i}
angle =-overline{alpha }sigma
^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle
Az^{j},z^{i}
angle $

4.$langle Az^{2j-1},z^{2i-1}
angle =|alpha |^{2}sigma
^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i}
angle $

對於所有$i,jin mathbb{Z}$, 其中$sigma =1+|alpha
|^{2},,alpha in mathbb{C},alpha
eq0$

上述情形給了我們一個二冪次遞迴關係。下圖表示矩陣第$ij$項如何生成對應的二乘二的區塊的項 {$a_{2i,2j}, a_{2i-1,2j}, a_{2i,2j-1}, a_{2i-1,2j-1}$ }

egin{figure}[hp]
egin{center}
includegraphics[scale=0.42]{cubic.pdf}
end{center}
caption{此二幕次遞迴的形式} end{figure}
由於[2]中可知$displaystyle A=sum_{n=0}^{infty }S^{n}BS^{ast
n}$, 其中
$ Sz^i=sigma ^{-1/2}(overline{alpha }z^{2i}+z^{2i-1})$

$ B=sum sum b_{ij}(u_{i}otimes u_{j})$ ;;; which
$u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z)$
則我們可以用它來求出符合上述情形的$a_{ij}$的明確公式。
Let (b$_{i,j}$) be a bounded matrix on extit{ l}$^{2}$, $Bbb
T={zinBbb C:|z|=1}$, and A be a bounded matrix on L$^{
2}(mathbb{T)}$ satisfying the conditions

1.$langle Az^{2j},z^{2i}
angle =sigma ^{-1}b_{ij}+|alpha
|^{2}sigma ^{-1}langle Az^{j},z^{i}
angle $;

2.$langle Az^{2j},z^{2i-1}
angle =-alpha sigma
^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i}
angle $;

3.$langle Az^{2j-1},z^{2i}
angle =-overline{alpha }sigma
^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle
Az^{j},z^{i}
angle$;

4.$langle Az^{2j-1},z^{2i-1}
angle =|alpha |^{2}sigma
^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i}
angle $

hspace{-0.76cm} for all $i,jin mathbb{Z}$, where $sigma
=1+|alpha |^{2},,alpha in mathbb{C},alpha
eq0$.

The above conditions evidently suggests that there is a "dyadic"
relation in the entries of $A$. Here in the following picture
illustrates how each $ij-$th entry of $A$ generates the 2 by 2 block
in $A$ with entries ${a_{2i 2j}, a_{2i-1 2j}, a_{2i 2j-1},
a_{2i-1 2j-1}}.$ vspace{-0.3cm}
egin{figure}[hp]
egin{center}
includegraphics[scale=0.42]{cubic.pdf}
end{center}
vspace{-0.8cm}caption{The dyadic recurrent form} end{figure}

It has been shown [2] that $displaystyle A=sum_{n=0}^{infty
}S^{n}BS^{ast n}$, where $Sz^i=sigma ^{-1/2}(overline{alpha
}z^{2i}+z^{2i-1})$ and $$B=sumlimits_{i=-infty}^infty
sumlimits_{j=-infty}^infty b_{ij}(u_{i}otimes u_{j}),
u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z).$$
In this paper, we shall use the above relations to compute $langle
a_{i,j}
angle $ explicitly.

ewline

Key words: shift operator, bounded matrix, dyadic recurrent formula,
slant Toeplitz operator, separable Hilbert space


2.$langle Az^{2j},z^{2i-1}
angle =-alpha sigma
^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i}
angle $

3.$langle Az^{2j-1},z^{2i}
angle =-overline{alpha }sigma
^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle
Az^{j},z^{i}
angle $

4.$langle Az^{2j-1},z^{2i-1}
angle =|alpha |^{2}sigma
^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i}
angle $

for all $i,jin mathbb{Z}$, where $sigma =1+|alpha
|^{2},,alpha in mathbb{C},alpha
eq0$
egin{figure}[hp]
egin{center}
includegraphics[scale=0.42]{cubic.pdf}
end{center}
caption{The dyadic recurrent form} end{figure}

Since it has been
shown [2] that $displaystyle A=sum_{n=0}^{infty }S^{n}BS^{ast
n}$, where

$ Sz^i=sigma ^{-1/2}(overline{alpha }z^{2i}+z^{2i-1})$

$ B=sum sum b_{ij}(u_{i}otimes u_{j})$ ;;; which
$u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z)$


Then we can use it to compute $langle Az^{j},z^{i}
angle $
explicity if A satisfies the previous condition.

ewline

Key words: shift operator, bounded matrix, dyadic recurrent formula,
slant Toeplitz operator, separable Hilbert space
1 Introduction -------------------------------------iv
2 The operators that constant with S ------vii
[1] Mark C. Ho, Adjoint of slant Toeplitz operators II, Integral Equations and Operator Theory,
2001(41),pp.179-188 .
[2] Mark C. Ho and Mu Ming Wong, Operators that commute with slant Toeplitz operators,
submitting .
[3] R. Bowen, Equilibrium State and the Ergodic Theory of Anosov Diffeomorphism, Lecture
Notes in Mathematics, no. 470, Springer-Verlag, Berlin, New York, 1975.
[4] D. Chen and X. Zheng, Spectral radii and eigenvalues of subdivision operators, preprint.
[5] A. Cohen and I. Daubechies, A stability criterion for biorthogonal wavelet bases and their
related subband coding scheme, Duke Math. J., 68, no. 2, 1992, pp.313-335.
[6] A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions,
Revista Mathematica Iberoamericana, 12, 1996, pp.527-591.
[7] J.B. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs,
36, American Mathematical Society, Providence, 1991.
[8] I. Daubechies, I. Guskov and W. Sweldens, Regularity of irregular subdivision, Constructive
Approximation, 15, no. 3, 1999, pp.381-426.
[9] M. Ho, Adjoints of slant Toeplitz operators, Integral Equations and Operator Theory, 29,
1997, pp.301-312.
xvi
[10] M. Ho, Adjoints of slant Toeplitz operators II, Integral Equations and Operator Theory,
41, 2001, pp.179-188.
[11] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford University
Press, New York, 1985.
[12] G. Strang, Eigenvalues of (#2)H and convergence of the cascade algorithm, IEEE Trans.
Sig. Proc., 1996.
[13] W. Sweldens and P. Schr¨oder, Building your own wavelets at home, Wavelets in Computer
Graphics, ACMSIGGRAPH Course Notes, 1996.
[14] L. Villemoes, Wavelet analysis of refinement equations, SIAM J. Maths. Analysis, 25, no.
5, 1994, pp.1433-1460.
[15] P. Walters, An Introduction to Ergodic Theory, Graduate Text in Mathematics, 79,
Springer-Verlag, New York, 1982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top