跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 19:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂宜憲
研究生(外文):Yi-Hsien Lu
論文名稱:不同高介電常數與傳統低溫介電層應用於低溫複晶矽薄膜電晶體之比較
論文名稱(外文):Comparison of Low Temperature Thin Film Transistors with Different High-k Dielectric Layers and Conventional TEOS Silicon Dioxide Layer
指導教授:趙天生簡昭欣
指導教授(外文):Tien-Sheng ChaoChao-Hsin Chien
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:71
中文關鍵詞:高介電常數低溫薄膜電晶體
外文關鍵詞:High-kLTPS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 (中文)
本論文中,擁有高效能P型通道薄膜電晶體以不同的高介電係數介電層材料(包括二氧化鉿(HfO2)、鉿矽酸鹽(Hf-silicate)被提出,以金屬-有機汽相沉積的高介電係數介電層與傳統二氧化矽(TEOS-Oxide)介電層在低溫環境中被製作出來,以相同物理厚度比較作為我們的主軸,並且研究其效應與可靠度。我們發現高介電常數在電性的表現上有著普遍性的增長:包括了較低的臨界電壓、較好的次臨界特性、較高的驅動電流;最主要原因在於高介電常數介電層有較高的電容密度,使得多晶矽結晶邊界的載子缺陷能快速被填滿,因而多晶矽電晶體存在的暫態時間較為縮短。然而二氧化鉿介電層的場效遷移率卻是較低的,並且在關閉狀態下的漏電流增加較快,原因在於其跟複晶矽通道間的介面特性較為曲折,以及由於高介電常數所造成的在汲極端有較大的電場有關。
不同介電層的複晶矽薄膜電晶體,在不同溫度的加壓測試下都會隨著測試時間的改變而裂化,其中鉿矽酸鹽在目前的測試中展現了較佳的可靠度,主要在於其有較高的結晶溫度、較好的薄膜品質與較少的介面狀態密度。
Abstract (English)

In thesis, high-performance p-channel poly-Si thin-film transisitors (TFTs) are demonstrated using the different high-k dielectric with hafnium dioxide (HfO2), hafnium silicate (HfSiOX) layer are demonstrated by metal-organic chemical vapor deposition system with low-temperature processing. We compare with tetra-ethyl-oxy-silicate silicon dioxide (TEOS-SiO2) layer with the same physics thickness for our main shaft. Furthermore, the effect and reliability are also studied. It is found both the electric characteristic of high-k dielectric TFTs that improve obviously: including the lower threshold voltage, the better subthreshold swing, the higher on current. The main reason is imputed to the high capacitance density of high-k dielectric layers such that the grain boundary traps of poly-Si could be full faster and decrease the transition time exist in the poly-Si TFTs. However, the field effective mobility of HfO2 dielectric TFTs is lower due to the roughness interface between HfO2 layer and poly-Si channel and larger leakage current in the off state due to the high field near drain.
Devices characteristics of different dielectric layers degrade with stress time and stress conditions. We found the HfSiO dielectrics TFTs have the better reliability due to it has the better interface ,higher crystalline temperature and lower density of states.
Contents
摘要 (中文)……………………………………………………………I
Abstract(English)……………………………………………………III
誌謝……………………………………………………………………V
Table & Figure Captions…………………………………VIII
Contents
Chaprer1 Introduction...................................1
1.1 Overview of Poly-Si Thin-Film Transistor............1
1.2 Motivation..........................................3
1.2.1 The thin oxide issue..............................3
1.2.2 Why do we use high-k dielectric ?.................4
1.3 Thesis Organization.................................5
Chaprer2 Experiment Method..............................6
2.1 Fabrication Process.................................6
2.2 Device Electrical Parameters Extraction.............7
2.2.1 Threshold Voltage.................................7
2.2.2 Mobility..........................................8
2.2.3 Sub-threshold Swing...............................8
2.3 Result and Discussion...............................9
2.3.1 Electrical Properties ............................10
2.3.2 Off-State Leakage Current Mechanism..............13
Chaprer3 Reliability of the p-Channel with TEOS and High-k TFTs...................................................32
3.1 Introduction.......................................32
3.1.1 Threshold Voltage Shift..........................32
3.1.2 Transconductance and Drive Current Degradation...33
3.2 Experimental Procedures............................33
3.3 Result and Discussion..............................34
3.3.1 Negative Gate Bias Stress Instability............34
3.3.2 Negative Bias Temperature Instability............36
Chaprer4 Conclusion and Summary........................65
4.1 Conclusion.........................................65
4.1.1 Electrical Properties............................65
4.2 Reliability........................................66
Reference:.............................................67
Reference:
[1] O. K. Weimer. in IRE-AIEE Solid State Device Research Conference: Stanford University, 1961.
[2] O. K. Weimer, Proc. IRE 50, pp. 1462, 1962.
[3] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda and T. Nagano, “ Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, vol. 42, no. 7, pp. 1305-1313, 1995.
[4] T. P. Brody, "The thin film transistor-A late flowering bloom," Electron Devices, IEEE Transactions on, vol. 31, pp. 1614-1628, 1984.
[5] W. G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, vol. 33, pp. 477-481, 1986.
[6] H. Kuriyama et al., “Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor,” Jpn. J. Appl. Phys., vol. 30, pp. 3700-3703, 1991.
[7] A. Nakamura, F. Emoto, E. Fujii and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” in IEDM Tech. Dig., pp.847, 1990.
[8] G. K. Guist, and T. W. Sigmon, “High-performance laser-processed polysilicon thin-film transistors,” IEEE Electron Device Letters, vol. 20, no. 2, pp. 77-79, 1999.
[9] S. Y. Yoon, K. Hyung, C. O. Kim, J. Y. Oh and J. Jang, “Low temperature metal induce crystallization of amorphous silicon using a Ni solution,” J. Appl. Phys., vol. 82, pp. 5865-5867, 1997.
[10] S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Letters, vol. 17, pp. 160-162, 1996.
[11] A. Yin, and S. J. Fonash, “High-performance p-channel poly-Si TFT’s using electron cyclotron resonance hydrogen plasma passivation,” IEEE Electron Device Letters, vol. 15, no. 12, pp. 502-503, 1994.
[12] C. K. Yang, T. F. Lei, C. L. Lee, “The combined effects of low pressure NH3 annealing and H2 plasma hydrogenation on polysilicon thin-film-transistors,” IEEE Electron Device Letters, vol. 15, pp. 389-390, 1994.
[13] J. W. Lee, N. I. Lee, J. I. Kan, C. H. Han, “Characteristics of polysilicon thin-film transistor with thin-gate dielectric grown by electron cyclotron resonance nitrous oxide plasma,” IEEE Electron Device Letters, vol. 18, pp. 172-174, 1997.
[14] K. C. Moon, J. H. Lee, M. K. Han, “Improvement of polycrystalline silicon thin film transistor using oxygen plasma pretreatment before laser crystallization,” IEEE Trans. Electron Devices, vol. 49, pp. 1319-1322, 2002.
[15] T. Unagami and O. Kogure, “Large on/off current ratio and low leakage current poly-Si TFTs with multichannel structure,” IEEE Trans. Electron Devices, vol. 35, no. 11, pp. 1986-1989, 1988.
[16] B. H. Min, C. M. Park and M. K. Han, “A novel offset gated polysilicon thin film transistor without an additional offset mask,” IEEE Electron Device Letters, vol. 16, no. 5, pp. 161-163, 1995.
[17] Z. Xiong, H. Liu, C. Zhu and Sin, J.K.O., “Characteristics of high-K spacer offset-gated polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1304-1308, 2004.

[18] P. S. Shih, C. Y. Chang, T. C. Chang, T. Y. Huang, D. Z. Peng and C. F. Yeh, “A novel lightly doped drain polysilicon thin-film transistor with oxide sidewall spacer formed by one-step selective liquid phase deposition,” IEEE Electron Device Letters, vol. 20, no. 8, pp. 421-423, 1999.
[19] K. Y. Choi and M. K. Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device Letters, vol. 17, no. 12, pp. 566-568, 1996.
[20] H. C. Lin, C.-M Yu, C.-Y. Lin, K.-L.Yeh, T. Y. Huang and T. F. Lei, “A novel thin-film transistor with self-aligned field induced drain,” IEEE Electron Device Letters, vol. 22, no. 1, pp. 26-28, 2001.
[21] C. S. Lai, C. L. Lee, T. F. Lei and H. N. Chern, “A novel vertical bottom-gate polysilicon thin film transistor with self-aligned offset,” IEEE Electron Device Letters, vol. 17, no. 5, pp. 199-201, 1996.
[22] Shen-De Wang, “Study on Fluorine Passivation Techniques and the Reliability for Low Temperature Polycrystalline Silicon Thin-Film Transistors” NCTU 博士論文 , September 2005.
[23] E. P. Gusev, V. Narayanan, M. M. Frank, “Advanced high-k dielectric stacks with poly-Si and metal gates: Recent progress and current challenges.” IBM, 2006.
[24] Z. Jin, H. S. Kwok, and M. Wong, "High-performance polycrystalline SiGe thin-film transistors using Al2O3 gate insulators," Electron Device Letters, IEEE, vol. 19, pp. 502-504, 1998.
[25] B. F. Hung, K. C. Chiang, C. C. Huang, A. Chin, and S. P. McAlister, "High-performance poly-silicon TFTs incorporating LaAlO3 as the gate dielectric," Electron Device Letters, IEEE, vol. 26, pp. 384-386, 2005.
[26] K. H. Lee, J. K. Park, and J. Jang, "A high-performance polycrystalline silicon thin film transistor with a silicon nitride gate insulator," Electron Devices, IEEE Transactions on, vol. 45, pp. 2548-2551, 1998.
[27] I.-W. Wu, T.-Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, "Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation," Electron Device Letters, IEEE, vol. 12, pp. 181-183, 1991.
[28] T. Yamaguchi, R. Iijima, T. Ino, A. Nishiyama, H. Satake, and N. Fukushima, "Additional scattering effects for mobility degradation in Hf-silicate gate MISFETs," presented at Electron Devices Meeting, 2002. IEDM '02. Digest. International, 2002.
[29] M. Gurfinkel, J. S. Suehle, J. B. Bernstein, and Yoram. Shapira, “Enhance Gate Induced Drain Leakage Current in HfO2 MOSFETs due to Remote Interface Trap-Assisted Tunneling ”, presented at Electron Devices Meeting, 2006. IEDM '06. Digest. International, 2006.
[30] C. F. Yeh, S. S. Lin, T. Z. Yang, C. L. Chen, and Y. C. Yang, “Performance and Off-State Current Mechanisms of Low-Temperature Processed Polysilicon Thin-Film Transistors with Liquid Phase Deposited SiO2 Gate Insulator”, IEEE Trans. on Electron Devices, vol. 41, no. 2, pp. 173–179, February 1994.
[31] C. T. Angelis, C. A. Dimitriadis, I. Samaras, J. Brini and G. Kamarinos, V. K. Gueorguiev, and Tz. E. Ivanov, “Study of leakage current in n-channel and –channel polycrystalline silicon thin-film transistors by conduction and low frequency noise measurements”, J. Appl. Phys., 82(8), 15 October 1997.
[32] M. Hack, I-W. Wu, T. J. King and A. G. Lewis, ”Analysis of Leakage Currents in Poly-Silicon Thin Film Transistors”, IEDM Technical Digest, pp.385, 1993.
[33] M. Yazaki, S. Takenaka, and H. Ohshima, “Conduction Mechanism of Leakage Current Observed in Metal-Oxide-Semiconductor Transistors and Poly-Si Thin-Film Transistors”, Jpn. J. Appl. Phys., vol. 31, no. 2A, pp. 206-209, February 1992.
[34] Shunji Seki, Osamu Kogure, and Bunjiro Tsujiyama, “Effect of crystallization on trap state densities at grain boundaries in polycrystalline silicon”, Electron Device Letters, IEEE, vol. 8, no. 8, pp. 368-370, August 1987.
[35] T. J. King, M. G. Hack, and I-Wei Wu, “Effective density-of-states distributions for accurate modeling of polycrystalline silicon thin-film transistors”, J. Appl. Phys., vol. 75, no. 2, pp. 908-913, January 1994.
[36] B. A. Khan, R. Pandya, “Activation-energy of source-drain current in hydrogenated and unhydrogenated polycrystalline thin-film transistors”, IEEE Trans. on Electron Devices., vol. 37, pp. 1727-1734, 1990.
[37] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis and A. C. Chiang, “Passivation kinetics of two types of defects in polycrystalline thin-film transistors by plasma hydrogenation ”, Electron Device Letters, IEEE, vol. 12, pp. 181-183, 1991.
[38] N. A. Hastas, C. A. Dimitriadis, and G. Kamarions, “Effect of interface roughness on gate bias instability of polycrystalline silicon thin-film transistors”, J. Appl. Phys., vol. 92, no. 8, pp. 4741-4745, October 2002.
[39] Dieter K. Schroder, Jeff A. Babcock, “Applied Physics Reviews-Focused Review;Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing”, J. Appl. Phys., vol. 94, no. 1, pp. 1-18, July 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top