跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇峻霆
研究生(外文):Chun-Ting Su
論文名稱:抗單純皰疹病毒藥物篩選及其作用機制之探討
論文名稱(外文):Screening of Anti-HSV Agents and Study of Their Antiviral Mechanisms
指導教授:張淑媛張淑媛引用關係
指導教授(外文):Sui-Yuan Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫事技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:60
中文關鍵詞:單純皰疹病毒抗病毒藥物
外文關鍵詞:HSVantiviral drug
相關次數:
  • 被引用被引用:0
  • 點閱點閱:676
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
單純皰疹病毒(Herpes Simplex Virus;HSV)分為HSV-1及HSV-2兩型,常引起口腔及生殖器部位的皮膚或黏膜感染,在初次感染後會潛伏在神經系統中,待宿主免疫力低下時再間歇性地復發。除了皮膚及黏膜的症狀,偶而亦可能導致失明或致命。由於其流行率高,具高度傳染性,且不易研發預防性的疫苗,故發展治療性藥物相對地十分重要。目前針對HSV感染最有效的治療方式為使用無環鳥苷(acyclovir)或與其相似的藥物,此類藥物屬於核苷酸相似物,透過病毒的胸腺嘧啶激酶(Thymidine kinase;TK)催化可以在受感染的細胞裡抑制病毒的DNA聚合酶,進而抑制病毒的複製;但近年來已逐漸有抗藥病毒株的產生,造成治療上的困難,故發展新的抗病毒藥物確有其必要性;目前已是許多研究單位致力的方向。在本篇論文中,我們首先對於九百多種候選化合物進行抗單純皰疹病毒活性之篩選,發現其中73種化合物可能具有抗病毒之活性。之後再利用溶菌斑減少實驗,對於篩選出來的藥物進行藥效確認,結果有14種化合物在1 μM的濃度可抑制50%以上的病毒複製。其中最有潛力的候選藥物12-2 8G被選出,利用MTT試驗進一步分析候選藥物的細胞毒性,計算50%細胞毒性濃度(CC50)及選擇性指標(SI),藉此評估藥物實際使用在治療上的可能性。我們嘗試尋找12-2 8G之抗病毒之機制,並發現藥物在病毒吸附、穿透時加入或作用於細胞及病毒前處理皆不會抑制病毒的複製。此外,12-2 8G與傳統藥物無環鳥苷間沒有明顯的協同作用。藥物作用時間點試驗則顯示12-2 8G作用在病毒複製的中期或後期。12-2 8G對病毒DNA複製無明顯的抑制作用。之後將利用RT-PCR偵測病毒基因量表現,以進一步瞭解藥物抗病毒活性的機制。希望藉由這些實驗結果可對於抗病毒藥物的研發與設計提供更多資訊。
Herpes Simplex Virus (HSV) types 1 and 2 infections are the cause of cold sores and genital herpes as well as life-threatening or sight-impairing disease mainly in immunocompromized patients, pregnant women and newborns. After primary infections, HSV can establish persistent infection in nervous system and may reactivate intermittently upon appropriate stimuli. Because of the wide popularity, high ability to transmit and the difficulty to develop prophylactic vaccines, development of chemotherapy is comparatively important. To date, the most widely used and successful chemotherapy are nucleoside analogue agents such as acyclovir (ACV), which inhibits viral DNA polymerase after being phosphorylated by HSV thymidine kinase (TK). However, development of nucleoside analogue-resistant HSV strains has been reported in immunocompromised individuals. Thus, there is a need to develop novel anti-HSV agents to substitute for or to complement conventional anti-HSV chemotherapy. In this study we first screened a total of 960 candidate chemicals for their antiviral activity. Seventy-three of these candidate chemicals were further confirmed to have definite antiviral activity by plaque reduction assay. Among these 73 chemicals, 14 have a 50% effective concentration (EC50) lower than 1 μM. The cytotoxicity concentration (CC50) of these chemicals was subsequently determined by MTT assay and the selective index (SI) for each chemical was thus calculated. One potential drug, 12-2 8G, with SI=17 was further analyzed. By in vitro assay, HSV-1 replication was not significantly inhibited when 12-2 8G was added at viral entry, virus pretreatment or cell pretreatment. In the time-of-addition assay, 12-2 8G was shown to inhibit HSV-1 replication between 6 and 12 hours after infection. It is likely that 12-2 8G block HSV-1 infection at early or late stage. However, there was no interaction between 12-2 8G and ACV based on isobologram analysis. 12-2 8G did not significantly inhibit HSV DNA replication. We will perform time-of-addition assay and RT-PCR to further clarify the target(s) of 12-2 8G. Such information will be helpful in the development and designing of antiviral agents in the future.
誌謝
目錄 1
圖表目錄 2
中文摘要 3
英文摘要 4
第一章 前言 5
1.1  單純皰疹病毒的病毒顆粒結構
1.2 單純皰疹病毒的基因表現
1.3  單純皰疹病毒的流行病學
1.4 單純皰疹病毒的預防及治療
1.5 單純皰疹病毒的抗藥性
1.6 研究目的與實驗設計
第二章 實驗材料及方法 12
2.1 實驗材料
2.2 實驗步驟
第三章 實驗結果 25
3.1 抗病毒藥物篩選及其抗病毒效果之確認
3.2 測定抗病毒藥物之細胞毒性
3.3  尋找12-2 8G之抗病毒機制
第四章 討論 30
第五章 未來工作 35
第六章 參考文獻 37
第七章 附加圖表 43
1.Nishiyama, Y., Herpes simplex virus gene products: the accessories reflect her lifestyle well. Rev Med Virol, 2004. 14(1): p. 33-46.
2.Honess, R.W. and B. Roizman, Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol, 1974. 14(1): p. 8-19.
3.DM Knipe, P.H.E., Fields Virology, ed. t. Edn). 2001: Lippincott Williams & Wilkins.
4.Beck, T.W. and R.L. Millette, Regulation of herpes simplex virus gene transcription in vitro. J Cell Biochem, 1982. 19(4): p. 333-47.
5.Mackem, S. and B. Roizman, Structural features of the herpes simplex virus alpha gene 4, 0, and 27 promoter-regulatory sequences which confer alpha regulation on chimeric thymidine kinase genes. J Virol, 1982. 44(3): p. 939-49.
6.Kleymann, G., Novel agents and strategies to treat herpes simplex virus infections. Expert Opin Investig Drugs, 2003. 12(2): p. 165-83.
7.Sullivan, K.M., et al., Preventing opportunistic infections after hematopoietic stem cell transplantation: the Centers for Disease Control and Prevention, Infectious Diseases Society of America, and American Society for Blood and Marrow Transplantation Practice Guidelines and beyond. Hematology (Am Soc Hematol Educ Program), 2001: p. 392-421.
8.Liesegang, T.J., Herpes simplex virus epidemiology and ocular importance. Cornea, 2001. 20(1): p. 1-13.
9.Kimberlin, D.W., Neonatal herpes simplex infection. Clin Microbiol Rev, 2004. 17(1): p. 1-13.
10.Elion, G.B., et al., Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5716-20.
11.Schaeffer, H.J., et al., 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature, 1978. 272(5654): p. 583-5.
12.Prusoff, W.H., Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim Biophys Acta, 1959. 32(1): p. 295-6.
13.Furgiuele, F.P., et al., The effectiveness of 5-iodo-2-deoxyuridine in the treatment of herpes simplex keratitis. Trans Am Ophthalmol Soc, 1962. 60: p. 243-59.
14.Vere Hodge, R.A., et al., Selection of an oral prodrug (BRL 42810; famciclovir) for the antiherpesvirus agent BRL 39123 [9-(4-hydroxy-3-hydroxymethylbut-l-yl)guanine; penciclovir]. Antimicrob Agents Chemother, 1989. 33(10): p. 1765-73.
15.Beutner, K.R., Valacyclovir: a review of its antiviral activity, pharmacokinetic properties, and clinical efficacy. Antiviral Res, 1995. 28(4): p. 281-90.
16.Rosecan, L.R., et al., Antiviral therapy with ganciclovir for cytomegalovirus retinitis and bilateral exudative retinal detachments in an immunocompromised child. Ophthalmology, 1986. 93(11): p. 1401-7.
17.Brady, R.C. and D.I. Bernstein, Treatment of herpes simplex virus infections. Antiviral Res, 2004. 61(2): p. 73-81.
18.Bronson, J.J., et al., Synthesis and antiviral activity of the nucleotide analogue (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine. J Med Chem, 1989. 32(7): p. 1457-63.
19.Helgstrand, E., et al., Trisodium phosphonoformate, a new antiviral compound. Science, 1978. 201(4358): p. 819-21.
20.Katz, D.H., et al., Antiviral activity of 1-docosanol, an inhibitor of lipid-enveloped viruses including herpes simplex. Proc Natl Acad Sci U S A, 1991. 88(23): p. 10825-9.
21.Sacks, S.L., et al., Clinical efficacy of topical docosanol 10% cream for herpes simplex labialis: A multicenter, randomized, placebo-controlled trial. J Am Acad Dermatol, 2001. 45(2): p. 222-30.
22.Ernst, M.E. and R.J. Franey, Acyclovir- and ganciclovir-induced neurotoxicity. Ann Pharmacother, 1998. 32(1): p. 111-3.
23.Johnson, G.L., et al., Acute renal failure and neurotoxicity following oral acyclovir. Ann Pharmacother, 1994. 28(4): p. 460-3.
24.Betz, U.A., et al., Potent in vivo antiviral activity of the herpes simplex virus primase-helicase inhibitor BAY 57-1293. Antimicrob Agents Chemother, 2002. 46(6): p. 1766-72.
25.Crute, J.J., et al., Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nat Med, 2002. 8(4): p. 386-91.
26.Duan, J., et al., Oral bioavailability and in vivo efficacy of the helicase-primase inhibitor BILS 45 BS against acyclovir-resistant herpes simplex virus type 1. Antimicrob Agents Chemother, 2003. 47(6): p. 1798-804.
27.Kleymann, G., et al., New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat Med, 2002. 8(4): p. 392-8.
28.Danve-Szatanek, C., et al., Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up. J Clin Microbiol, 2004. 42(1): p. 242-9.
29.Morfin, F. and D. Thouvenot, Herpes simplex virus resistance to antiviral drugs. J Clin Virol, 2003. 26(1): p. 29-37.
30.Gong, Y., et al., Preclinical evaluation of docusate as protective agent from herpes simplex viruses. Antiviral Res, 2001. 52(1): p. 25-32.
31.Cheng, H.Y., et al., Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. J Antimicrob Chemother, 2004. 53(4): p. 577-83.
32.Wachsman, M.B., et al., Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res, 2003. 58(1): p. 17-24.
33.Larkin, J., et al., Synergistic antiviral activity of human interferon combinations in the hepatitis C virus replicon system. J Interferon Cytokine Res, 2003. 23(5): p. 247-57.
34.Odds, F.C., Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother, 2003. 52(1): p. 1.
35.Kuo, Y.C., et al., Regulation of herpes simplex virus type 1 replication in Vero cells by Psychotria serpens: relationship to gene expression, DNA replication, and protein synthesis. Antiviral Res, 2001. 51(2): p. 95-109.
36.Greco, A., A.M. Laurent, and J.J. Madjar, Repression of beta-actin synthesis and persistence of ribosomal protein synthesis after infection of HeLa cells by herpes simplex virus type 1 infection are under translational control. Mol Gen Genet, 1997. 256(3): p. 320-7.
37.White, R.E., High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol, 2000. 40: p. 133-57.
38.Gadler, H., A. Larsson, and E. Solver, Nucleic acid hybridization, a method to determine effects of antiviral compounds on herpes simplex virus type 1 DNA synthesis. Antiviral Res, 1984. 4(1-2): p. 63-70.
39.Bronstein, J.C. and P.C. Weber, A colorimetric assay for high-throughput screening of inhibitors of herpes simplex virus type 1 alkaline nuclease. Anal Biochem, 2001. 293(2): p. 239-45.
40.Spector, F.C., et al., Inhibition of herpes simplex virus replication by a 2-amino thiazole via interactions with the helicase component of the UL5-UL8-UL52 complex. J Virol, 1998. 72(9): p. 6979-87.
41.Wentland, M.P., et al., Antiviral properties of 3-quinolinecarboxamides: a series of novel non-nucleoside antiherpetic agents. Drug Des Discov, 1997. 15(1): p. 25-38.
42.Rabalais, G.P., M.J. Levin, and F.E. Berkowitz, Rapid herpes simplex virus susceptibility testing using an enzyme-linked immunosorbent assay performed in situ on fixed virus-infected monolayers. Antimicrob Agents Chemother, 1987. 31(6): p. 946-8.
43.Rosenthal, K.S., C.M. Hodnichak, and J.L. Summers, Flow cytometric evaluation of anti-herpes drugs. Cytometry, 1987. 8(4): p. 392-5.
44.Prichard, M.N., et al., A microtiter virus yield reduction assay for the evaluation of antiviral compounds against human cytomegalovirus and herpes simplex virus. J Virol Methods, 1990. 28(1): p. 101-6.
45.Kodama, E., et al., Evaluation of antiherpetic compounds using a gastric cancer cell line: pronounced activity of BVDU against herpes simplex virus replication. Microbiol Immunol, 1996. 40(5): p. 359-63.
46.Yasin, B., et al., Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Infect Dis, 2000. 19(3): p. 187-94.
47.Schmidtke, M., et al., A rapid assay for evaluation of antiviral activity against coxsackie virus B3, influenza virus A, and herpes simplex virus type 1. J Virol Methods, 2001. 95(1-2): p. 133-43.
48.Aguilar, J.S., et al., Dimethyl sulfoxide blocks herpes simplex virus-1 productive infection in vitro acting at different stages with positive cooperativity. Application of micro-array analysis. BMC Infect Dis, 2002. 2(1): p. 9.
49.Akanitapichat, P. and K.F. Bastow, The antiviral agent 5-chloro-1,3-dihydroxyacridone interferes with assembly and maturation of herpes simplex virus. Antiviral Res, 2002. 53(2): p. 113-26.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top