|
[1] Bordignon, S. and Scagliarini, M. (2002). Statistical analysis of process capability indices with measurement errors. Quality and Reliability Engineering International, 18, 321-332. [2] Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23(3), 615-643. [3] Burdick, R. K. and Larsen, G. A. (1997). Confidence intervals on measures of variability in R&R Studies. Journal of Quality Technology, 29(3), 261-273. [4] Chan, L. K., Cheng, S. W. and Spiring, F. A. (1988). A new measure of process capability: Cpm . Journal of Quality Technology, 20(3), 162-175. [5] Chan, L. K., Xiong, Z. and Zhang, D. (1990). On the asymptotic distributions of some process capability indices. Communication in Statistics-Theory and Methods, 19(1), 11-18. [6] Chou, Y. M. and Owen, D. B. (1989). On the distributions of the estimated process capability indices. Communication in Statistics-Theory and Methods, 18, 4549-4560. [7] Chou, Y. M., Owen, D. B. and Borrego, A. S. (1990). Lower confidence limits on process capability indices. Journal of Quality Technology 22, 223-229. [8] Dolezal, K. K., Burdick, R. K. and Birth N. J. (1998). Analysis of a two-factor R&R Study with fixed operators. Journal of Quality Technology, 30(2), 163-170. [9] Finley J. C. (1992). What is capability ? Or what is Cp and Cpk. ASQC Quality Congress Transactions, Nashville, 186-191. [10] Floyd, D. A. and Laurent, C. J. (1995). Gauging: an underestimated consideration in the application of statistical process control. Quality Engineering, 8(1), 13-29. [11] Franklin, L.A. and Wasserman, G. S. (1991). Bootstrap confidence interval estimates of Cpk: an introduction. Communications in Statistics: Simulations and Computation, 20, 231-242 [12] Franklin, L. A. and Wasserman G. S. (1992). Bootstrap lower confidence limits for capability indices. Journal of Quality Technology, 24(4), 196-210. [13] Hamada, M. and Weerahandi, S. (2000). Measurement system assessment via generalized inference. Journal of Quality Technology, 32(3), 241-253. [14] Hoffman, L. L. (2001). Obtaining confidence intervals for Cpk using percentiles of the distribution of Cp. Quality and Reliability Engineering International, 17(2), 113-118. [15] Juran, J. M., Gryna, F. M. and Bingham, R. S. Jr. (1974). Quality Control Handbook. McGraw-Hill, New York. [16] Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52. [17] Kocherlakota, S. (1992). Process capability index: recent development. Sankya: The Indian Journal of Statistics, 54(B), Pt. 3, 352-369. [18] Kotz, S. and Johnson, N. L. (1993). Process Capability Indices, Chapman & Hall, London. [19] Kotz, S., and Lovelace, C. (1998). Process capability indices in theory and practice. Arnold, London, U.K. [20] Kotz, S., Pearn, W. L. and Johnson, N. L. (1993). Some process capability indices are more reliable than one might think. Journal of the Royal Statistical Society, Series C, 42(1), 55-62. [21] Kushler, R. and Hurley, P. (1992). Confidence bounds for capability indices. Journal of Quality Technology, 24, 188-195. [22] Levinson, W. A. (1995). How good is your gage?. Semiconductor International, 165-168. [23] Levinson, W. A. (1996). Do you need a new gage?. Semiconductor International, 113-117. [24] Li, H., Owen, D. B. and Borrego, S. A. (1990). Lower confidence limits on process capability indices based on the range. Communication in Statistics- Simulation and Computation, 19(1), 1-24. [25] Lin, P. C. and Pearn, W. L. (2002). Testing process capability for one-sided specification limit with application to the voltage level translator. Microelectronics Reliability, 42(12), 1975-1983. [26] Mandel, J. (1972). Repeatability and reproducibility. Journal of Quality Technology, 4(2), 74-85. [27] Mittag, H. J. (1997). Measurement error effects on the performance of process capability indices. Frontiers in Statistical Quality Control, 5, 195-206. [28] Mizuno, S. (1988). Company-wide Total Quality Control, Asian Productively Organization, Tokyo. [29] Montgomery, D. C. and Runger, G. C. (1993). Gauge capability and designed experiments. Part I: basic methods. Quality Engineering, 6(1), 115-135. [30] Montgomery, D. C. and Runger, G. C. (1993). Gauge capability analysis and designed experiments. Part II: experimental design models and variance component estimation. Quality Engineering, 6(2), 289-305. [31] Montgomery, D. C. (2000). Introduction to Statistical Quality Control, 4th Edition, John Wiley and Sons, New York. [32] Nagata, Y. and Nagahata, H. (1994). Approximation formulas for the lower confidence limits of process capability indices. Okayama Economic Review, 25, 301-314. [33] Pearn, W. L. and Chen, K. S. (1999). Making decisions in assessing process capability index Cpk. Quality and Reliability Engineering International, 15, 321-326. [34] Pearn, W. L., Chen, K. S. and Lin, P. C. (1999). The probability density function of the estimated process capability index Cpk. Far East Journal of Theoretical Statistics, 3(1), 67-80. [35] Pearn, W. L. and Chen, K. S. (2002). One-sided capability indices Cpu and Cpl: decision making with sample information. International Journal of Quality & Reliability Management, 19(3), 221-245. [36] Pearn, W. L., Lin, G. H. and Chen, K. S. (1998). Distributional and inferential properties of the process accuracy and process precision indices. Communications in Statistics-Theory and Methods, 27(4), 985-1000. [37] Pearn, W. L. and Lin, P. C. (2002). Testing process performance based on the capability index Cpk with critical values. Computers and Industrial Engineering, 47, 351-369 . [38] Pearn, W. L., Kotz, S. and Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24, 216-231. [39] Pearn W. L. and Shu, M. H. (2003). Manufacturing capability control for multiple power distribution switch processes based on modified Cpk MPPAC. Microelectronics Reliability, 43, 963-975. [40] Pearn, W. L. and Sue, M. H. (2003). An algorithm for calculating the lower confidence bounds of Cpl and Cpu with application to low-drop-out linear regulators. Microelectronics Reliability, 43, 495-502. [41] Rocke, D. M. and Lorenzato, S. (1995). A two-component model for measurement error in analytical chemistry. Technometrics, 37(2), 176-184. [42] Spiring, F. A., Leung, B., Cheng, S. and Yeung, A. (2003). A bibliography of process capability papers. Quality and Reliability Engineering International, 19, 1-16. [43] Tang, L. C., Than, S. E. and Ang, B. W. (1997). A graphical approach to obtaining confidence limits of Cpk. Quality and Reliability Engineering International, 13, 337-346. [44] Vännman, K. (1995). A unified approach to capability indices. Statistica Sinica, 5, 805-820. [45] Vännman, K. and Kotz, S. (1995). A superstructure of capability indices distributional properties and implications. Scandinavian Journal of Statistics, 22, 477-491. [46] Vännman, K. (1997). Distribution and moments in simplified form for a general class of capability indices. Communications in Statistics: Theory and Methods, 26, 159-179. [47] Vardeman, S. B. and Vanvalkenburg, E. S. (1999). Two-way random-effects analyses and gauge R&R studies. Technometrics, 41(3), 202-211. [48] Wang, C. M. and Iyer, H. K. (1994). Tolerance intervals for the distribution of true values in the presence of measurement errors. Technometrics, 36(2), 162-170. [49] Wilson, A., Hamada, M., and Xu, M. (2004). Assessing production quality with nonstandard measurement errors. Journal of Quality Technology, 36(2), 193-206. [50] Zhang, N. F., Stenback, G. A. and Wardrop, D. M. (1990). Interval estimation of process capability index . Communications in Statistics: Theory and Methods, 19, 4455-4470.
|