跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/27 15:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮俊億
研究生(外文):Jun-Yi Ruan
論文名稱:雷射輔助式奈米壓印技術應用於微米和奈米結構製程之參數探討
論文名稱(外文):Investigation on Laser Assisted Direct Imprinting (LADI) Parameters for Fabricating Micro- and Nano-Structures
指導教授:蕭飛賓李永春李永春引用關係
指導教授(外文):Fei-Bin HsiaoYung-Chun Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:84
中文關鍵詞:壓印深度石英母模準分子脈衝雷射雷射輔助奈米壓印技術壓印力量雷射能量密度
外文關鍵詞:Imprinted pressureQuartz moldImprinted depthExcimer laserLaser fluenceLaser Assited Direct Imprinting technology
相關次數:
  • 被引用被引用:1
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  最近幾年隨著微機電技術已經發展非常成熟,且將微機電技術推向奈米科技時代。因為在奈米尺度下我們可以得到更小且密度更高的特徵尺寸。 然而在製作奈米尺度等級的線寬時,受到傳統物理光學繞射極限的限制。所以學者們紛紛研究不同的新穎技術來克服傳統光學繞射限制。而其中一種新穎方法是奈米壓印技術,其在奈米結構與奈米製程上有其重要的應用,是當今奈米科技中的重要研究課題。許多學者聲稱雷射輔助奈米壓印技術更被譽為下一世代最具潛力的技術之一。
  本研究在雷射輔助奈米壓印中,先製作出有微米級及奈米級圖案的母模,接著利用準分子雷射當作加熱的矽表面的熱源,將母模的圖案完整的轉移到矽的表面上。這種快速在矽表面成形出微米級及奈米級圖案的方法不需要用到傳統曝光、顯影和蝕刻的製程。本文探討雷射能量、壓印力量、壓印的尺寸對於壓印深度的相互影響;這基本參數對雷射輔助奈米壓印應用上是一項重要的研究。
  為了使雷射輔助奈米壓印有效率,建議使用雷射能量密度0.6 ~1.0 J/cm2而壓印力量為150~1200 MPa能在矽上轉印出完美結果。並且藉由著奈米凹模的模子可以在矽表面成形出微米級及奈米級的結構。
  In recent years, the commercialization of Micro Electro-Mechanical System (MEMS) technology has been successfully developed. The transition of MEMS technology to nano fabrication is a solution to the growing demand for smaller and highdensity feature sizes in the nanometer scale. However, it is difficult to achieve critical dimensions at sub-wavelength scale using traditional optical lithography techniques due to the optical diffraction limit. Therefore, developed several techniques overcome this diffraction limit and simultaneously achieve the massive and similar patterning. One of the methods involves that the Nano-imprinting lithography (NIL) is now a promising method for nano-patterning and nano-fabrication. Many researchers claimed that Laser Assited Direct Imprinting ( LADI ) technology is a promising technology for for the next generation lithography tools.
  This study focuses on the micro- and nano-scaled fabrication process of Laser Assited Direct Imprinting as well as fabrication of quartz molds. Either micro- or nano- scaled patterns on the quartz molds were successfully transformed to silicon surface using a single excimer laser pulse as the heating source. This rapid technique for fabricating micro- and nano-scaled structures in the silicon does not require spin coating photo-resist, photolithography, and chemical etching. Crucial parameters in LADI process such as the laser fluence (J/cm2), the contact pressure (MPa), feature size and the imprinted depth were studied and optimized systematically. These essential parameters in the experiments can be optimized to improve LADI simulation study.
  In order to make the LADI more efficiently, the 0.6~1.0 J/cm2 laser energy and 150~1200 MPa imprinted pressure on the substrate are required. Consequently, the LADI technique has a great potential for the nanopatterning and nanostructures fabrication by the nano-scaled concave quartz mold.
中文摘要....................................................I
ABSTRACT..................................................II
ACKNOWLEDGEMENT.......................................IV
CONTENTS................................................VI
LIST OF TABLES.............................................IX
LIST OF FIGURES.............................................X
SYMBOLS DESCRIPTIONS...................................XIX

Chapter 1 INTRODUCTION
1-1 Preface-------------------------------------------------------------------------------1
1-2 Literature Survey-------------------------------------------------------------------1
 1-2-1 Hot embossing nano-imprint lithography (HE-NIL)---------------------------2
 1-2-2 Soft imprint lithography (SIL)---------------------------------------------------4
 1-2-3 Step and flash imprint lithography (SFIL)--------------------------------------5
 1-2-4 Laser assisted direct imprint (LADI)--------------------------------------------8
1-3 Motivation and Objective----------------------------------------------------------9
1-4 Thesis Outline----------------------------------------------------------------------10
Chapter 2 EXPERIMENTAL SET-UP AND MOLD FABRICATIONS
2-1 Experimental Instruments and Equipments------------------------------------12
2-2 Mold Fabrications-----------------------------------------------------------------19
 2-2-1 Fabricated micro-scaled quartz molds----------------------------------------19
 2-2-2 Fabricated nano-scaled quartz molds-----------------------------------------28
2-3 Laser Assisted Direct Imprinting (LADI)--------------------------------------34
 2-3-1 Excimer laser micro-machining system--------------------------------------33
 2-3-2 Designed working platform---------------------------------------------------38
 2-3-3 Process for LADI--------------------------------------------------------------40
Chapter 3 RESULTS AND DISCUSSIONS
3-1 Results for Micro-Imprinting ---------------------------------------------------42
 3-1-1 Comparisons on pressure------------------------------------------------------65
 3-1-2 Comparisons on laser fluence-------------------------------------------------66
 3-1-3 Comparisons on feature size--------------------------------------------------66
3-2 Results for Nano-Imprinting -------------------------------------------------------67
 3-1-2 Comparisons on pile-up effect ---------------------------------------------71
3-3 Discussions---------------------------------------------------------------------------72
Chapter 4 CONCLUSION AND FUTURE PERSPECTIVE
4-1 Conclusion---------------------------------------------------------------------------78
4-2 Future Perspective------------------------------------------------------------------79
REFERENCES----------------------------------------------------------------------------80
VITA-----------------------------------------------------------------------------------83
[1]M. Rothschild, R. B. Goodman, M. A. Hartney, M. W. Horn, R. R. Kunz, J. H. C. Sedlacek, and D. C. Shaver, “Photolithography at 193 nm”, Journal of Vacuum Science and Technology B, vol. 10(6), 2989-2996, 1992.
[2]S. Y. Chou, P. R. Kraus and P. J. Renstrom, “Nanoimprint lithography”, Journal of Vacuum Science and Technology B, vol. 14(6), 4129-4133, 1996.
[3]S. Y. Chou, P. R. Kraus and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Applied Physics Letters, 67(21), 3114-3116, 1995.
[4]S. Y. Chou, P. R. Kraus and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution”, Applied Physics Letters, vol. 272, 85-87, 1996.
[5]T. K. Whidden, D. K. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE”, Nanotechnology, vol. 7, 447-451, 1996.
[6]D. W. Wang, S. G. Thomas, K. L. Wang, Y. Xia and G. M. Whitesides, “Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si, and SiO2 surfaces using self-assembled monolayers”, Applied Physics Letters, vol. 70(12), 1593-1595, 1997.
[7]X. M. Zhao, Y. Xia and G. M. Whitesides, “Soft lithographic methods for nano-fabrication”, Journal of Materials Chemistry, vol. 7(7), 1069-1074, 1997.
[8]Y. Xia and G. M. Whitesides, “Soft lithography”, Angewandte Chemie International Edition, vol. 37(5), 550-575, 1998.
[9]X. M. Zhao, Y. Xia and G. M. Whitesides, “Soft lithographic methods for nano-fabrication”, Journal of Materials Chemistry, vol. 7(7), 1069-1074, 1997.
[10]M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: An alternative approach to high-resolution patterning”, Proceedings of the SPIE's 24th International Symposium on Microlithography: Emerging Lithographic Technologies III, Santa Clara, CA, vol. 3676, Part One, 379-389, 1999.
[11]P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, M. Stewart, J. Ekerdt, S.V. Sreenivasan, J.C. Wolfe, C.G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography”, Journal of Vacuum Science and Technology B, vol. 17(6), 2965-2969, 1999.
[12]M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S.V. Sreenivasan, J. Hollenhorst, C. G. Willson, “Step and flash imprint lithography for sub-100nm patterning”, 2000 SPIE's 25th International Symposium Microlithography: Emerging Lithographic Technologies III. Feb. 28 - Mar. 3, 2000 Santa Clara, CA.
[13]T. Bailey, B. J. Choi, M. Colburn, A. Grot, M. Meissl, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, C.G. Willson, “Step and flash imprint lithography: template surface treatment and defect analysis, ” Journal of Vacuum Science and Technology B, vol. 18(6), 3572-3577, 2000.
[14]M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J, Ekerdt, and C. G. Willsonet, “Step-and-flash Imprint Lithography: A New Approach to High Resolution Patterning,” Proc. of SPIE, vol. 3676, 379, 1999.
[15]http://www.molecularimprints.com/Technology/stepandrepeat.html
[16]S. Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon”, Nature, vol. 417, 835-837, 2002.
[17]E. -Z. Liang, Z. -R. Huang, C. -F. Lin and C. -H. Kuan, “Laser assisted imprint of silicon nanostructure with good crystal quality”, Nanotechnology, 5th IEEE Conference on, 2005.
[18]Y. -C. Lee , C. -Y. Chiu, and F. -B. Hsiao, “Laser Assisted Roller Imprinting”, Nano/Micro Engineered and Molecular Systems, NEMS '07. 2nd IEEE International Conference on, 2007.
[19]Dirk Basting and Gerd Marowsky, ”Excimer Laser Technology”, Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2005.
[20]K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water”, Materials Science and Engineering A, vol. 372, 145-162, 2004.
[21]J. Brannon, “Excimer laser ablation and etching”, New York, N. J., Education Committee, American Vacuum Society, Chapter 2, 1993.
[22]Y. -C. Lee and C. -Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability”, Optics and Lasers in Engineering, vol. 45(1), 116-125, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 沈華海、林俊彥(2000),(學校社區化經營的理念與策略),《高中教育》,12,47-52。
2. 湯仁燕(2002),(台灣原住民的文化認同與學校教育重構),《教育研究集刊》48(4), 75-101。
3. 盧玉琴(2000),(親師攜手快樂行),《國教之友》,51(4),38-43。
4. 丁一顧、張德銳(2005),(中小學家長參與及其教育品質的關係),《教育研究月刊》,135,81-91。
5. 簡後聰(1997),(社區資源與學校教育),《教師天地》,86,16-21。
6. 吳清山、蔡菁芝(2002),(國民中小學學校社區化的重要理念與實施策略),《教育資料集刊》,27輯,157-169。
7. 邱淑華(1997),(學校如何拓展公共關係),《教師天地》,86,22-31。
8. 張琦琪、許添明(2001),(原住民學校實施社區本位教育之探討-國外實踐經驗及其對我國的啟示),《原住民教育季刊》,21,71-101。
9. 張芳全(2004),(社區與學校之合作參與),《國民教育》,44,3,8-13。
10. 蔡炳坤(1996)(以社區取代部落-淺談社區總體營造與原住民教育),《原住民教育季刊》,創刊號,58-61。
11. 詹正信(1999),(攜手、希望、快樂行—如何營造快樂的校園文化),《教育資料與研究》,30,22-26。
12. 吳雅玲(1998),(學校與社區結合之困境及突破之道),《教育資料文摘》,244,119-127。
13. 黃佳玲(2004),(家庭、學校與社區的關係),《國民教育》,44,3,14-17。
14. 林明地(1999),(家長參與學校教育的研究與實際:對教育改革的啟示),《教育研究資訊》,(7)2,61-79。
15. 林明地(1998),(家長參與學校活動與校務:台灣省公私立國民中小學校長的看法分析),《教育政策論壇》,1(2),155-186。