跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅敏謙
研究生(外文):LO MINCHAIN
論文名稱:噴流床之壓力擾動訊號分析
論文名稱(外文):Analysis of Pressure Fluctuation Signals of Spouted Beds
指導教授:呂理平
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:噴流床壓力擾動傅利葉小波轉換頻率
外文關鍵詞:spouted bedsstandand fluctunationFourierwavelet transformfrequency
相關次數:
  • 被引用被引用:1
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗探討不同圓錐角,不同粒子,不同床高下的噴流情形。並研究以上各操作變數對最小噴流化速度的影響;並用Fourier transform及wavelet transform將原始數據轉換作分析。
實驗結果顯示,壓力擾動可以準確判斷流態變化。如內部噴泉於圓錐處產生循環時,在床底所量測到的壓力擾動會有明顯改變。而在最小噴流化速度時,床內管壁所量測到的壓力擾動則會有一特殊的跳躍。實驗中當床高、粒徑及圓錐角度增加時,所對應的最小噴流化速度會隨之上升。又原始數據經FFT(快速傅利葉轉換)轉換後,發現於圓錐處產生循環時,床底會偵測到能量集中的主頻,而在最小噴流化速度後,床內管壁則會量測到低頻的擾動。將原始數據經wavelet 轉換後,依不同的頻率大小分成不同的區間,可利用其中的幾個頻率區域的擾動變化,與內部流態之改變相比較,以準確的判斷噴流床的操作情形。

The effects of different cone angle, particle size and bed height on the minimum spouting velocity, were studied with standard deviations and pressure drop. And analyzed these data with Fourier transform and Wavelet transform.
The results showed that standard deviations of pressure drop not only exactly describe the transition of regime but also determine minimum spouting velocity. We find minimum spouting velocity increase with bed height, cone angle and particle size. After transform these data with Fourier analysis, we can find major frequency in the frequency map is changed with the variation of hydrodynamic. And with Wavelet transform, these data could be divided into several scales with different frequencies. Then we could find that the change of the major frequency scales are responded to the hydrodynamic changes.

目 錄
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖表索引 Ⅵ
一、 緒論…………………………………………………….
二、 文獻回顧
2-1. 噴流床之構造……………………………………….
2-2. 噴流床之特色………………………………………
2-3. 噴流床的流態變化…………………………….
2-4. 噴流床的運動機構………………………………
2-5. 最小噴流化速度………
2-6. 最大可噴流床高……………………………………………….
2-7. 噴流床之壓降…………………………..
2-8. 噴流床之穩定性………………………………………
2-9. 噴流床的應用
三、 實驗裝置與步驟……………………………………….
3-1. 實驗裝置………………………………………….
3-2. 實驗步驟……………………………………….
3-3. 數據分析……………………………………….
3-3.1. fourier transform
3-3.2. wavelet transform………………………………….
四、 結果與討論…………………………………………..
4-1. 不同位置下壓降與流速的關係..
4-2. 壓力擾動標準偏差與流速的關係………………………
4-3. 最小噴流化速度……………………………
4-4. Fourier transform後,頻率域與流態變化之關係……………………
4-5. Wavelet transform後,頻率區間之SD與流態變化之關係
4-6. 床高、粒徑、圓錐角度對系統流態的影響
4-6.1. 床高對系統流態的影響
4-6.2. 粒徑對系統流態的影響………………………………….
4-6.3. 圓錐角度對系統流態的影響
4-7. 不規則粒子系統的討論
五、 結論…………………………………………………….
六、 符號說明………………………………………………
七、 參考文獻……………………………………………..
附錄

Asenjo, J. A., R. Munoz and D. L. Pyle, “On The Transition from a Fixed to a Spouted Bed”, Chem. Eng. Sci. 32, 109-117(1977).
Bakshi, B. R., H. Zhong, P. Jiang and L. S. Fan, “Analysis of Flow in Gas-Liquid Bubble Column Using Multi-Resolution Methods,” Trans. IChemE, 73, 608-614(1995).
Becker, H. A., “An Investigation of The Laws Governing The Spouting of Coarse Particles”, Chem. Eng. Sci., 13, 245-262(1961).
Bilbao, J., M. Olazar, A. Romero, and J. M. Arandes, “Design and Operation of a Jet Spouted Bed Reactor with Continuous Catalyst Feed in the Benzyl Alcohol Polymerization”, Ind. Eng. Chem. Res., 26, 1297-1305(1987).
Bridgwater, J., in “Fluidization”, J. F. Davidson, R.Clift & D. Harrison, Eds., Academic Press, Chap.6 (1985).
Brunello, G., G. D. Nina, F. C. S. Nunes and C. A. O. Nascimento, “Minimum Air Requirement for Spouting Mixed Particles”, Can. J. Chem. Eng., 52, 170-173(1974).
Epstein, N., C. J. Lim and K. B. Mathur, “Data and Models for Flow Distribution and Pressure Dorp in Spouted Beds”, Can. J. Chem. Eng., 56, 436-447(1978).
Foong, S. K., C. J. Lim and A. P. Watkinson, “Coal Gasification in Spouted Bed”, Can. J. Chem. Eng., 58, 84-91(1980).
Geldart, D., “Types of Gas Fluidization”, Powder Technol., 7, 285-292(1973).
Geldart, D., “Single Particles, Fixed and Quiescent Beds”, in “Gas Fluidization Technology ”, D. Geldart, Ed., John Wiley & Sons, Chap.2 (1986).
Gishler, P. E. and K. B. Mathur, “Method of Contacting Solid Particles with Fluids”, U. S. Patent No. 2,786,280 to Nat. Res. Council of Can., 1957(filed 1954). Brit. Patent No. 801,315. Cited by Mathur, K. B. and N. Epstein, “Spouted Bed”, Academic Press, New York, NY, U. S. A. (1974).
Grace, J.R. and C. J. Lim, “Permanent Jet Formation in Bed of Particulate solids”, Can. J. Chem. Eng., 65, 160-167(1987).
Grbavcic, Z.B., Vukovic, D. V., Zdanski, F. K., Littman, H., “Fluid Flow Pattern, Minimum Spouting Velocity and Pressure Dorp in Spouted Beds”, Can. J. Chem. Eng., 54, 33-41(1976).
Huang, C. C. and C. S. Chyang, “ Gas Discharge Modes at a Single Nozzle in Two- Dimensional Fluidized Beds ”, J. Chem. Eng. Japan, 24, 633-639(1991).
Lefroy, G. A. and J. F. Davidson, “ The Mechanics of Spouted Bed”, Trans. Inst. Chem. Eng., 47, 7120(1969).
Lim, C. J. and K. B. Mathur, “Residence Time Distribution of Gas in Spouted Bed”, Can. J. Chem. Eng., 52, 150-155(1974).
Littman, H. and M. H. Morgan III, “A New Spouting in Beds of Coarse Particles Deeper than the Maximum Spoutable Height”, Can. J. Chem. Eng., 64, 505-508 (1986).
Littman, H., M. H. Morgan III, D. V. Vukovic, F. K. Zdanski and Z. B. Grbavcic, “A Theory For Predicting The Maximum Spoutable Height in a Spouted Bed”, Can. J. Chem. Eng., 55, 497-501(1977).
Littman, H., M. H. Morgan III, D. V. Vukovic, F. K. Zdanski & Z. B. Grbavcic, “ Prediction of The Maximum Spoutable Height and Average Spout to Inlet Tube Diameter Ratio in Spouted Beds of Spherical Particles”, Can. J. Chem. Eng., 57, 684-687(1979).
Madonna, L. A. and R. F. Lama, “The Derivation of Equation for Predicting Minimum Spouting Velocity”, AIChE J., 4, 497(1958).
Malek, M. A. and Benjamin, C. Y. Lu , “Pressure Drop and Spoutable Bed Height in Spouted Beds”, Ind. Eng. Chem. Process Des. Dev., 4, 123-128(1965).
Mallat, S., “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, 11, 674-693(1989).
Manurung, F., “Studies in The Spouted Bed Technique with Particular Reference to Low Temperature Coal Carbonization”, Ph. D. thesis, Univ. of New South Wales, Kensington, Australia, (1964). Cited by Mathur, K. B. and N. Epstein, “Spouted Bed”, Academic Press, New York, NY, U. S. A. (1974).
Mathur, K. B. and N. Epstein, “Spouted Bed”, Academic Press, New York, NY, U.S.A. (1974).
Mathur, K. B. and P. E. Gishler, “A Technique for Contacting Gases with Corase Solid Particles”, AIChE J., 1, 157-164 (1955).
Morgan III, M. H. and H. Littman, “ Predicting The Maximum Spoutable Height in Spouted Beds of Irregularly Shaped Particles”, Ind. Eng. Chem. Fundam., 21, 23-26(1982).
Mukhlenov, I. P. and A. E. Gorshtein, “ Investigation of a Spouting Beds ”, Khim. Prom.,41, 443 (1965). Cited by Mathur, K. B. and N. Epstein., “Spouted Bed ”, Academic Press,N.Y., U.S.A. (1974).
Nikolaev, A. M. and Golubev, L. G., “Basic Hydrodynamic Characteristics of The Spouting Bed”, Zaved. Khim. Tekhnol., 7, 855(1964). Cited by Mathur, K. B. and N. Epstein, “Spouted Bed”, Academic Press, New York , NY, U.S.A.(1974).
Olazar, M., M. J. San Jose, A. T. Aguado, J. M. Arandes and J. Bilbao, “Hydrodynamics of Nearly Flat Base Spouted Bed”, Chem. Eng. Journal, 55, 27-37 (1994).
Olazar, M., M. J. San Jose, A. T. Aguado, J. M. Arandes and J. Bilbao, “Pressure Drop in Conical Spouted Bed”, Chem. Eng. Journal, 51, 53-60(1992).
Olazar, M., M. J. San Jose, A. T. Aguado, J. M. Arandes and J. Bilbao, “Stable Operation Conditions for Gas-Solid Contact Regimes in Conical Spouted Bed”, Ind. Eng. Chem. Res., 31, 1784-1791(1992).
Park, S. H. and S. D. Kim, “Wavelet Transform Analysis of Fluctuation Signals in a Three-Phase Fluidized Bed,” Korean J. Chem. Eng., 18, 1015-1019(2001)
Reddy, K. V. S., R. J. Fleming and J. W. Smith, “Maximum Spoutable Bed Depths of Mixed Particle Size Beds”, Can. J. Chem. Eng., 46, 329-334(1968).
Rovero, G., C. M. H. Brereton, N. Epstein, J. R. Grace, L. Casalegno and N. Piccinini, “Gas Flow Distribution in Conical Base Spouted Beds”, Can. J. Chem. Eng., 61, 289-296 (1983).
San Jose, M. J., M. Olazar, R. Aguado and J. Bilbao, “Influence of The Conical Section Geometry on The Hydrodynamic of Shallow Spouted Bed ”, Chem. Eng. Journal, 62, 113-120 (1996).
San Jose, M. J., M. Olazar, R. Aguado and J. Bilbao, “Expansion of Spouted Bed in Conical Contactors”, Chem. Eng. Journal, 51, 45-52 (1993).
Smith, J. W. and K. V. S. Reddy, “Spouting of Mixed Particle Size Bed”, Can. J. Chem. Eng., 55, 122(1964). Cited by Mathur, K. B. and N. Epstein, “Spouted Bed”, Academic Press, New York , NY, U.S.A.(1974).
Uemaki, O., R. Yamada and M. Kugo, “Particles Segregation in Spouted Beds of Binary Mixtures of Particles”, Can. J. Chem. Eng., 61, 303-307 (1983).
Venlzen, D. V., H. J. Flamn and H. Langenkamp, “Gas Flow Patterns in Spouted Bed”, Can. J. Chem. Eng., 52, 145-149 (1974).
Wu, S. W. M., C. J. Lim and N. Epstein, “Hydrodynamics of Spouted Bed at Elevated Temperatures”, Chem. Eng. Comm., 62, 251-268(1987).
潘榮賢, “以壓力擾動標準偏差決定噴氣噴流床之流態變化與壁-床間熱傳之探討”, 化工系碩士論文, 國立台灣大學, 台北, 台灣(2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top