中文部分
王俊程,2000,運用資料挖掘技術協助健保財務管理:以承保中斷及繳費不正常資料挖掘為例,行政院衛生署八十八年下半年及八十九年度委託研究計畫。
王復中,2000,健保醫療費用審查自動化之研究,國立政治大學資訊管理研究所碩士論文。江美靜,2001,有時間區間的循序挖掘,國立中央大學資訊管理研究所碩士論文。朱毓仁,2003,應用數位分析與資料探勘技術為審計分析性複核程序之研究,國立中正大學會計與資訊科技研究所碩士論文。汪昭緯,2002,應用分群技術偵測信用卡異常交易之研究,國立中央大學資訊管理研究所論文。呂永和、賴瓊惠、劉佳灝和吳素英,2000,以布林演算法為基礎的多階層序列型樣探勘技術,國科會補助計畫。
林信忠,1999,資料發掘技術應用于健保醫療費用稽核之研究,私立元智大學管理研究所碩士論文。吳志聰,2002,以特徵探勘提升入侵偵測系統效率,私立中原大學資訊工程研究所碩士論文。吳素環、吳琦,2006,如何建立一套有效的舞弊預防及管理機制,會計研究月刊242期68頁。周桂棻,2002,應用資料採礦技術於審計判斷壞帳提列合理性之研究,私立實踐大學貿易經營研究所碩士論文。周歆凱,2004,利用『資料探勘技術』探討急診高資源耗用者之特性,國立台灣大學醫療機構管理研究所碩士論文。留乃俊,2001,大型資料庫中高效率之漸進式關聯規則探勘方法,國立成奶j學資訊工程研究所碩士論文。張立命,2001,應用資料探勘於健保醫療資料之研究,國立中央大學資訊管理研究所碩士論文。張玉霜,2003類神經網路應用於綜合所得稅選案查核之研究,國立成奶j學工業管理科學研究所碩士論文。張紘愷,2004,應用分群技術於資料探勘之研究,國立高雄應用科技大學電子與資訊工程研究所碩士論文。耿晴,2001,Benford定律在審計技術上的應用,會計研究月刊192期121-129頁。釦挫R,2004,舞弊防制之計畫與控制要點,資誠會計師事務所。
黃盈彬,2002,不連續序列資料挖掘之研究—以股市為例,國立中央大學碩士論文。黃士銘和莊盛祺,2005,ACL資料分析與電腦稽核教戰手冊,全華科技圖書股份有限公司。
陳世源,2000,資料採礦技術在病例與藥品關連性之研究,國立中山大學資訊管理研究所碩士論文。陳可欣,2001,在動態交易資料庫中探勘線上關聯法則之設計與分析,國立台南師範學院資訊教育研究所碩士論文。陳榮政,2004,區段雜湊及刪除演算法於時序性關聯規則探勘之研究,私立佛光人文社會學院資訊學系碩士論文。楊文昇,2001,有效率的挖掘關聯法則之高頻物項集合,私立逢甲大學資訊工程學系碩士論文。劉偉倫,2000,應用資料分析及探勘技術於健保醫療費用管控及申報異常篩選作業,私立元智大學資訊工程管理研究所。劉麗真,2002,政府審計人員運用電腦輔助審計技術之實證研究,私立逢甲大學會計與財稅所碩士論文。賴怡君,2005,應用資料採礦技術評估資訊系統異常事件之研究,國立中正大學會計與資訊科技研究所。顏秀珍、李御璽和王思穎,2003,從大型資料庫中分析個人化的購物行為,第十四屆件物導向技術及應用研討會。
羅贊興、陳怡成、凌啟東和呂佳蕙,2001,上市公司重大舞弊案例解析及偵測之探討,臺灣證券交易所研究計畫。
英文部分
Agrawal,R.S., Imielinski T., and Swami A.,1993, Mining association rules between sets of items in large database, association for computing machinery Special Interest Group on Management Of Data. 93, p207-216.
Arnold Vicky and Sutton Steve G., 2002, Researching Accounting as an Information Systems Discipline, Published by the American Accounting Association Information Systems Section, p273-283.
Alles Michael G., Kogan Alexander and Vasarhelyi Miklos A.,2004,Restoring auditor credibility:tertiary monitoring and logging of continuous assurance systems, International Journal of Accounting Information Systems.Vol5, p183-202.
ACL Services Ltd.,2005, Fraud Detection and Prevention:Transactional Analysis for Effective Fraud Detection. [Online]. Available:http://www.acl.com.
Benford, F., 1938, The law of anomalous numbers, Proceedings of the American Philosophical Society 78, p551-572.
Bolton Richard J. and Hand David J., 2002, Statistical Fraud Detection: A Review., Statist. Sci. 17, iss. 3, p235-255 .
Burton,Doug., 2004, Auditing medicare and Medicaid compliance with data analysis tools. Journal of the Association of Healthcare Internal Auditors, Inc.
Baumgartnera, Christian., Bohmb, Christian. and Baumgartner, Daniela., 2005, Modelling of classification rules on metabolic patterns including machine learning and expert knowledge, Journal of Biomedical Informatics 38, p 89-98.
Cabena, P., Hadjinian, P., Stadler, R. and Verhees, J., 1998, Discovering Data Mining: From Concept to implementation, Prentice Hall.
Codeere, David., 2001, Ratio Analysis-An Understated Data Analysis Technique. [Online]. Available:http://www.theiia.org.
Durtschi, Cindy., Hillison, William. and Pacini, Carl., 2004,The Effective Use of Benford’s Law to Assist in Detecting Fraud in Accounting Data, Journal of Forensi Accounting 1524-5586/V01., p17-34.
Fayyad, U. M.,1996, Data Mining and Knowledge Discovery: Making Sense out data, IEEE expert, Vol. 11, No.5, p20-25.
General Accounting Office Testimony, 2003. DATA MINING Results and Challenges for Government Program Audits and Investigations. GAO-03-591T,USA.
Hidber, Christian., 1999, Online Association Rule Mining, association for computing machinery Special Interest Group on Management Of Data, p145-156.
Han J. and Kamber M., 2001. Data Mining: Concepts and Techniques, Morgan Kaufmann,San Francisco.
Hashina Parveen d/o Answer Ali, Ng Xiangyun, Chery1,Seah Xiang Ru,Emily, 2005, The Law of Anomalous Numbers Benford’s Law., National University of Singapore University Scholars Programme USC3001 Complexity Semester2 2004/2005.
Kell, W.G., Bonynton, W.C. and Johnson, R.N. , 2001, Modern Auditing Seventh edition., John Wiley, New York.
Liang, Deron., Lin, Fengyi., and Wu, Soushan., 2001, Electronically auditing EDP system:With the support of emerging information technologies. International Journal of Accounting Information Systems, p130-147.
Mannila H., Toivonen H., and Verkamo A. I.,1997, Discovery Of Frequent Episodes In Event Sequences, Data Mining and Knowledge Discovery, p259-289.
Megaputer, 2002, Medical Fraud Detection Through Data Mining., [Online]. Available:http:// www.megaputer.com.
Mueller Glen C., 2005. Using Computer Assisted Audit Techniques for More Effective Compliance and Monitoring in Healthcare Organizations. Journal of the Association of Healthcare Internal Auditors, Vol. 24, No. 2, p28-31.
Nigrini, M.J., 1994, Using digital frequencies to detect fraud, The White Paper (April), p3-6.
Nigrini, M.J., 1996, Digital analysis and the reduction of auditor litigation risk, Proceedings of the1996 Symposium An Auditing Problems, Deloitte & Touche, University of Kansas(May), p69-86.
Semenova Tatiana,2004, Discovering patterns of medical practice in large administrative health databases , data & Knowledge Engineering 51, p149-160.
Soualmia Lina F., Darmoni Stefan J.,2005.,Combining different standards and different approaches for health information retrieval in a quality-controlled gateway., International Journal of Medical Informatics (2005) 74,p141-150.
Thomas G. Sutton and Clark Hampton, 2002, A roadmap for future neural networks research in auditing and risk assessment, International Journal of Accounting Information Systems, p203-236.
中文網站部分
中央健康保險局網站,各月份全民健康保險特約醫事服務機構查處名冊., [Online]. Available:http://www.nhi.gov.tw/webdata/AttachFiles/Attach_1805_1_94年6~11月份查處月報.xls