跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭東宜
研究生(外文):Tung-Yi Kuo
論文名稱:光纖體重感測器研製與應用
論文名稱(外文):Design and Fabrication of Optical Fiber Weight Sensors
指導教授:梁財春梁財春引用關係
指導教授(外文):Tsair-Chun Liang
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電機工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:93
中文關鍵詞:曲率半徑光纖感測器單模光纖彎曲損耗
外文關鍵詞:Single-mode fiberOptical fiber sensorRadius of curvatureBending loss
相關次數:
  • 被引用被引用:2
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本論文所提出之光纖體重感測器,顧名思義為量測人體體重而設計,是以單模光纖(Single mode fiber, SMF)利用彎曲損耗作為感測元件,並使用SC-877翻模矽膠作為感測的介質,經單模光纖所製成最適合曲率半徑之感測元件,加上最佳硬度之翻模矽膠主劑與硬化劑調配比例為100:1.33來做成感測器之彈性膠體。本論文在設計光纖體重感測器,除了改變製作光纖感測元件的結構,並比較光纖在有保護套及沒有保護套之情況下,探討是否對量測值有影響。實驗將砝碼施加重量於光纖體重感測器上,比較改變不同光纖結構與有保護套及沒有保護套,並量測光纖之損失光功率量,從結果顯示發現體重之量測範圍可達0 ~ 125 公斤。
  本文之光纖體重感測器,藉由重量使彈性膠體形變,改變包覆在膠體光纖之彎曲半徑,測得造成損失之光功率量,並對應到公斤數與理論公式的結果一致,此感測器具有穩定性及重複性,且與市售之體重機比較,其製作結構簡單、成本低廉。
This thesis proposed the fiber optical body weight scale sensor. As the name implies, it is designed for the measurement of body weight. The optical sensor utilizes the principle of bending loss, using single-mode fiber (SMF) as a sensing assemble, and the SC-877 silicone as the sensing medium. After production of the sensor probe by single-mode fiber makes it the most appropriate radius of curvature. Plus the hardness of the best material for elastic gel sensors is mixed with the main base and hardener with the ratio of 100:1.33. The purpose of this thesis is to design the optical fiber body weight sensors. An additional aspect in this study was changing the production structure of the optical fiber sensor probe. Comparisons between the fiber under the protection sleeve and the fiber with no protective sleeve were studied in order to determine the influence between the measured values. The impact of weight on the optical fiber body weight sensors was also studied to compare the changing value of the fiber structure with the protective sleeve and no protective sleeve. Also measures the amount of power loss in the optical fiber. Results showed that, the amount of the body weight measurement range is between 0 to 125 kg.
The fiber-optic body weight sensors in this article use elastic colloidal deformation by weight to change the bend radius in the colloid coated optical fiber. Experimental results corresponds of the theoretical formula kilograms is consistent, and compare to commercial body weight sensor, the proposed sensor has simple and stable structure that can be made easily and with low costs.
目錄
中文摘要 I
ABSTRACT II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章緒論 1
1.1前言 1
1.2研究背景 1
1.3 研究動機 2
1.4 文獻回顧 2
1.5本文架構 6
第二章光纖感測器原理 7
2.1 光纖基本介紹 7
2.1.1 光纖基本構造 7
2.1.2 光纖種類 8
2.1.3 光纖傳輸優點 12
2.1.4 史涅爾定律 13
2.2光纖損失介紹 15
2.2.1外部因素引起的損失 16
2.2.2內部因素所引起的損失 18
2.3 光纖參數介紹 19
2.3.1 相對折射率差 19
2.3.2色散 20
2.3.3數值孔徑 20
2.3.4波長特性 21
2.4 光纖光柵種類介紹 21
2.4.1 布拉格光纖光柵 22
2.4.2 長週期光纖光柵 23
第三章實驗規劃與理論分析 24
3.1實驗規劃 24
3.1.1 光纖體重感測器架構 24
3.1.2 製作光纖感測元件之實驗規劃 25
3.1.3 感測器之光路架構與設備材料介紹 27
3.2 感測器理論分析 29
3.2.1 光纖彎曲功率 29
3.2.2 光纖彎曲波導方程式 31
3.2.3 光纖彎曲產生之相位差 33
3.2.4光纖彎曲損失係數 36
3.3光纖體重感測器彈性膠體之製作 38
3.4光纖體重感測器理論分析 42
3.4.1 彈性模數 42
3.4.2 卜松比 43
3.4.3 三維應力與應變 44
3.5感測器量測重量之實驗規劃 45
第四章實驗過程與結果分析 49
4.1 不同直徑之感測元件量測結果與分析 49
4.1.1實驗量測結果 49
4.1.2 數據分析與擬合關係式驗證 50
4.2 不同比例之感測器量測結果與討論 51
4.3光纖感測器之量測結果與討論 52
4.4保護光纖感測器之量測結果與分析 58
第五章結論與未來展望 67
5.1 結論 67
5.2 未來展望 68
參考文獻 69
附錄一、中英文對照表 77
參考文獻
[1] C. W. Lai, Y. L. Lo, J. P. Yur, W. F. Liu, C. H. Chuang, “Application of fabry-perot and fiber Bragg grating pressure sensorsto simultaneous measurement of liquid level and specific gravity,” Measurement, Vol. 45, pp. 469–473, 2012.
[2] T. Li, X. Dong, C. C. Chan, L. Hu, W. Qian, “Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating,” Optics Communications, Vol. 285, pp. 4874–4877, 2012.
[3] 張恩獎,光纖光柵壓力感測器之研製與其色散的研究,逢甲大學電機工程學系碩士班,碩士論文,2007。
[4] 黃堯民,光纖式懸臂樑結構微型壓力感測器,中原大學醫學工程學系,碩士論文,2003。
[5] Q. Meng, X. Dong, Z. Chen, K. Ni, “Simultaneous measurement of curvature and temperature based on two waist-enlarged fiber tapers and a fiber Bragg grating,” Photonics Global Conference, Vol. no,pp.1,5, 13–16, 2012.
[6] Y. Miao, K. Zhang, B. Liu, W. Lin, J. Yao, “Characteristics of bend sensor based on two-notch Mach–Zehnder fiber interferometer,” Optical Fiber Technology, Vol. 18, pp. 509–512, 2012.
[7] K. M. Tan, C. C. Chan, S. C. Tjin, X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sensors and Actuators A: Physical, Vol. 125, pp. 267–272, 2006.
[8] C. Shen, C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Sensors and Actuators A: Physical, Vol. 170, pp. 51–54, 2011.
[9] L. Xia, B. Shuai, W. Li, D. Liu, “Simultaneous measurement of temperature and infinitesimal displacement using the high cladding mode coupling loss in fiber Bragg grating,” Sensors and Actuators A: Physical, Vol. 176, pp. 53–56, 2012.
[10] L. Gao, S. Liu, Z. Yin, L. Chen, X. Chen,“ Multi-longitudinal mode fiber-optic vibration sensor,” Microwave Photonics, Vol. no, pp.133,136, 18–21, 2011.
[11] J. Kang, X. Dong, Y. Zhu, S. Jin, S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Optics Communications, Vol. 322, pp. 105–108, 2014.
[12] H. Bao, X. Dong, L.Y. Shao, C.L. Zhao, S. Jin, “Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum,” Optics Communications, Vol. 283, pp. 5021–5024, 2010.
[13] Y. Wang, C. l. Zhao, L. Hu, J. Kang, X. Dong, Z. Zhang, S. Jing, “A Novel tilt sensor with a large measurement range based on long period fiber grating,” International Conference Electronics and Optoelectronics, Vol. 4, pp. 65–67, 2011.
[14] 邱志鴻,光纖光柵傾斜感測器,逢甲大學電機工程學系碩士班,碩士論文,2011。
[15] Z. S. Guo, J. Feng, H. Wang, “Cryogenic temperature characteristics of the fiber Bragg grating sensors,” Cryogenics, Vol. 52, pp. 457–460, 2012.
[16] H. Sun, S. Yang, X. Zhang, L. Yuan, Z. Yang, M. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Optics Communications, Vol. 340, pp. 39–43, 2015.
[17] X. Zhang, W. Peng, Z. Liu, Z. Gong, “Fiber optic liquid level sensor based on integration of lever principle and optical interferometry,” Photonics Journal, IEEE, Vol.6, pp.1,7, 2014.
[18] B. Yun, N. Chen, Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” Photonics Technology Letters, IEEE, Vol.19, pp.1747–1749, 2007.
[19] Y. Dai, Q. Sun, J. Wo, X. Li, M. Zhang, D. Liu, “Highly sensitive liquid-level sensor based on weak uniform fiber Bragg grating with narrow-bandwidth,” International Conference on Advanced Infocom Technology 2011 (ICAIT 2011), Vol. no, pp.1,3,11–14, 2011.
[20] J. M. Hsu, C. L. Lee, H. P. Chang, W. C. Shih, C. M. Li, “Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing,” Photonics Technology Letters, IEEE, Vol.25, pp.1354–1357, 2013.
[21] C. Mou, K. Zhou, Z. Yan, H. Fu, L. Zhang, “Liquid level sensor based on an excessively tilted fiber grating,” Optics Communications, Vol. 305, pp. 271–275,2013.
[22] X. Lin, L. Ren, Y. Xu, N. Chen, H. Ju, J. Liang, Z. He, E. Qu, B. Hu, Y. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” Photonics Technology Letters, IEEE, Vol.26, pp.1613–1616, 2014.
[23] Q. Jiang, D. Hu, M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sensors and Actuators A: Physical, Vol. 170, pp. 62–65, 2011.
[24] T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” Photonics Technology Letters, IEEE, Vol.17, pp.2400–2402, 2005.
[25] 胡少康,光纖光柵水位計,逢甲大學電機工程研究所,碩士論文,2006。
[26] 楊淳良,光纖水感測器之展示,淡江大學電機工程學系暨研究所,會議論文,2014。
[27] J. Dai, M. Yang, X. Li, H. Liu, X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Optical Fiber Technology, Vol.17, pp. 210–213, 2011.
[28] H. Liu, S. W. Or, H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sensors and Actuators A: Physical, Vol. 173, pp. 122–126, 2012.
[29] Ł. Dziuda, F. W. Skibniewski, “A new approach to ballistocardiographic measurements using fiber Bragg grating-based sensors,” Biocybernetics and Biomedical Engineering, Vol. 34, pp. 101–116, 2014.
[30] A. S. Guru Prasad, S. N. Omkar, H. N. Vikranth, V. Anil, K. Chethana, S. Asokan, “Design and development of fiber Bragg grating sensing plate for plantar strain measurement and postural stability analysis,” Measurement, Vol. 47, pp. 789–793, 2014.
[31] C. R. Dennison, P. M. Wild, P. W. Byrnes, A. Saari, E. Itshayek, D. C. Wilson, “Ex vivo measurement of lumbar intervertebral disc pressure using fiber Bragg gratings,” J Biomech, Vol. 41, pp. 221–5, 2008.
[32] P. Bhatia, B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications,” Sensors and Actuators B: Chemical, Vol. 161, pp. 434–438, 2012.
[33] V. Mishra, N. Singh, D. V. Rai, U. Tiwari, G. C. Poddar, S. C. Jain, “Fiber Bragg grating sensor for monitoring bone decalcification,” Orthopaedics & Traumatology: Surgery & Research, Vol. 96, pp. 646–651, 2010.
[34] V. Mishra, N. Singh, U. Tiwari, P. Kapur, “Fiber grating sensors in medicine: Current and emerging applications,” Sensors and Actuators A: Physical, Vol. 167, pp. 279–290, 2011.
[35] T. Fresvig, P. Ludvigsen, H. Steen, O. Reikeras, “Fiber optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone,” Med Eng Phys, Vol. 30, pp. 104–108, 2008.
[36] L. Dziuda, J. Lewandowski, F. Skibniewski, G. Nowicki, “Fiber-optic sensor for respiration and heart rate monitoring in the MRI environment,” Procedia Engineering, Vol. 47, pp. 1291–1294, 2012.
[37] X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, P. L. Chu, “Temperature-insensitive chemical sensor based on a fiber Bragg grating,” Sensors and Actuators B: Chemical, Vol. 120, pp. 754–757, 2007.
[38] N. T. Trieu,應用蝕刻型長週期光纖光柵於尿糖監測,國立高雄應用科技大學精密模具與機械產業研發碩士外國學生專班,碩士論文,2012。
[39] 林哲諄,光纖足底壓力感測器之設計與研製,國立高雄第一科技大學電機工程研究所,碩士論文,2014。
[40] P. Wang, G. Farrell, Y. Semenova, Q. Wang, A. M. Hatta, G.Rajan, “Accurate theoretical prediction for single-mode fiber macro bending loss and bending induced polarization dependent loss,” Strasbourg, France Optical Sensors, Vol. 7003, pp. 70031Y–70031Y-13, 2008.
[41] Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode-multimode-single-mode fiber structure,” Measurement Science and Technology, Vol. 22, p.025203, 2011.
[42] P. Wang, Y. Semenova, A. Sun, Q. Wu, G. Farrell, “A macro bending fiber based vibration sensor using whispering gallery mode,” Brussels, Belgium, pp. The Society of Photo-Optical Instrumentation Engineers (SPIE), B-Phot-Brussels Photonics Team, Brussels-Capital Region, Fonds Wetenschappelijk Onderzoek (FWO), International Commission for Optics (ICO), Ville de Bruxelles, Vol. 7726, p.772623, 2011.
[43] P. Wang, Y. Semenova, G. Farrell, "Temperature dependence of macro bending loss in all-fiber bend loss edge filter," Optics Communications, Vol. 281, pp. 4312–4316, 2008.
[44] G. Rajan, Y. Semenova, G. Farrell, “All-fiber temperature sensor based on macro-bend single mode fiber loop,” Electronics Letters, Vol. 44, pp. 1123–1124, 2008.
[45] F. M. Haran, J. S. Barton, S. R. Kidd, J. D. C. Jones, “Optical fiber interferometric sensor using buffer guided light,” Measurement Science and Technology, Vol. 5, p. 526–530, 1994.
[46] 陳宏仁,DWDM 技術鋪設高頻寬網路遠景,光連雙月刊,第28 期,財團法人光電科技工業協進會,2008。
[47] 趙志彰,新型光纖傾斜感測器之研製與應用,國立高雄第一科技大學電機工程研究所,碩士論文,2014。
[48] 吳曜東,光纖原理與應用,全華科技圖書股份有限公司,台北,2001。
[49] 許招墉,光電工學概論,全華科技圖書股份有限公司,台北,1990。
[50] 郭原宏,光纖光柵感測器於結構監測之應用,國立臺灣大學土木工程學研究所,碩士論文,2000。
[51] S. R. Nagel, “Optic Properties Light Interaction with Solids,” IEEE Communications Magazine, Vol. 25, pp. 32–34, 1987.
[52] A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain sensor system with a fiber fabry–perot wavelength filter,” Opt. Lett, Vol. 18, pp. 1370–1372, 1993.
[53] R. W. Fallon, L. Zhang, I. Bennion, “An FBG-based impact event detection system for structural health monitoring,” IEEE Photonics Technology Letters, Vol. 9, pp. 1616–1618, 1997.
[54] 陳瑞鑫、陳鴻仁,光通訊原理與技術,全華科技圖書股份有限公司,2004。
[55] E. Fontana, H. D. Dulman, D. E. Doggett, R. H. Pantell, “Surface plasmon resonance on a single mode optical fiber,” IEEE Transactions on Instrumentation and Measurement, Vol. 47, pp. 168–173, 1998.
[56] C. J. Chung, A. S. Jazi, “Narrow-band spectral filter made of w-index and step-index fibers,” Journal of Lightwave Technology, Vol. 10, pp. 42–45, 1992.
[57] 三下真司、白中和,光纖通信原理與最新應用技術,建興文化事業有限公司,台北,2004。
[58] 黃衍介,近代實驗光學,東華書局,2005。
[59] 莊茗萱,食用純油品摻雜棉籽油之光纖光柵感測器研製,國立高雄第一科技大學電機工程研究所,碩士論文,2014。
[60] A. J. Harris, P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength hand bend radius,” Journal of Lightwave Technology, Vol. LT-4, pp.34–40, 1986.
[61] 潘昭倩,側壓式布拉格光纖光柵壓力感測器之研發,國立高雄第一科技大學光電工程研究所,碩士論文,2007。
[62] 張香彬,光纖光柵感測器於鋪面材料之溫度與應變量之研究,國立雲林科技大學營建工程研究所,碩士論文,2005。
[63] 陳紋琦,相位移長週期光纖光柵的製作及特性探討,國立中正大學物理研究所,碩士論文,嘉義縣民雄鄉,2006。
[64] H. J. Patrick, A. D. Kersey, F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” Lightwave Technology, Vol. 16, pp. 1606–1612, 1998.
[65] O. Duhem, J. F. Henninot, M. Warenghem, M. Douay, “Demonstration of long period grating efficient couplings with an external medium of a refractive index higher than that of silica,” Applied Optics, Vol. 37, p. 7223, 1998.
[66] A. J. Harris, P. F. Castle, “Band loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius," Journal of Lightwave Technology, Vol. LT-4, pp.34–40, 1986.
[67] H. Renner, “Bending losses of coated single-mode fibers: A simple approach," Journal of Lightwave Technology, Vol. 10, pp. 544–551, 1992.
[68] D. Marcuse, “Curvature loss formula for optical fibers," Journal of the Optical Society of America, Vol. 66, pp. 216–220, 1976.
[69] G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Applied Optics, Vol. 18, pp. 1445–1448, 1979.
[70] 黃建彰,光纖回音廊模態感測器之製作及應用,國立高雄應用科技大學機械與精密工程研究所,碩士論文,2011。
[71] 劉洸銓,彎曲干涉式光纖感測器之製作及應用,國立高雄應用科技大學機械與精密工程研究所,碩士論文,2013。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊