跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/02 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾玉綺
研究生(外文):Yu-Chi Tzeng
論文名稱:影響膠質-澱粉混合系統黏度與凝膠特性之因素
論文名稱(外文):Factors influencing the viscous and gelling characteristics of gum-starch mixed systems
指導教授:賴鳴鳳
指導教授(外文):Min-Feng Lai, Ph. D
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:133
中文關鍵詞:凝膠特性澱粉多醣膠質膠質-澱粉混合系統黏度流變性質多醣
外文關鍵詞:gelling characteristicstarchgumgum-starch mixed systemviscosityrheological propertypolysaccharide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的主要探討澱粉顆粒、濃度、種類對多醣膠質溶液及凝膠系統物性之影響。紅藻多醣-澱粉混合系統方面,溶液視黏度會隨澱粉濃度增加而呈線性增加的趨勢,此增加效應以糊化澱粉較大;除λ-紅藻膠外,其他紅藻多醣添加生或糊化澱粉(如玉米、馬鈴薯及樹薯澱粉)之混合系統之貯存(G¢)與損耗模數(G²)和剪稀性皆會提高。紅藻膠-蒟蒻粉之凝膠(除κ-紅藻膠外)系統冷卻凝膠時,前者分子量降低反而有較高之Tgel但較低之模數。當多醣及其與澱粉混合溶液經靜置一天後再加熱時,單純糊化玉米澱粉及λ-紅藻膠系統之G¢與G²值在約50℃時達最大值。i-紅藻膠及其含糊化玉米澱粉混合系統之模數於溫度高於約30℃始逐漸下降。又添加糊化澱粉可使λ-紅藻膠呈弱膠特性。在蒟蒻膠-澱粉混合系統方面,添加生(20%)或糊化(3%)澱粉對提高視黏度的效果似以直鏈澱粉含量高者較大,但所有系統皆為具剪稀性的濃縮溶液。1% 蒟蒻粉及含糊化玉米澱粉系統於冷卻過程中,模數皆呈平穩線性增加而無明顯凝膠相變。蒟蒻粉-糊化玉米澱粉混合溶液經貯存一天後再加熱時,凝膠特性可維持至50℃,異於單純蒟蒻膠系統。其他多醣膠質-澱粉混合系統方面,添加糊化玉米澱粉提升視黏度的效果約為生澱粉12-75倍,視膠質與澱粉種類及濃度而定。添加生澱粉於關華豆膠(GG)、刺槐豆膠(LBG)、羧甲基纖維素(CMC)、阿拉伯膠或糊化澱粉於CMC與阿拉伯膠時,並不明顯改變原膠質稀溶液之流變性,然糊化澱粉的存在使GG和結蘭膠系統呈弱膠特性。結蘭膠與三仙膠彈性膠體特性少受添加之澱粉所左右。上述膠質溶液經貯存再加熱時,單純GG系統之G¢與G²值在~52℃有最大值,而混合澱粉之上述模數最大的尖峰溫度則較單純GG者低(~35℃)、且tand最小值尖峰相當明顯。 單純CMC和三仙膠系統之模數亦在~50℃時有最大值,而混合系統之模數則隨升溫呈線性下降。單純及含混合澱粉之阿拉伯膠系統,其模數在>35℃後明顯上升、~45℃達最大平穩值。

ABSTRACT
The purpose of this study was to investigate the influences of starch granule, concentration and variety on the rheological properties of polysaccharide solutions and gels. For the mixtures of red algal polysaccharides with starches, the apparent viscosities increased linearly with increasing starch concentrations. The increasing effects of added starch components were greater for gelatinized starches than for native starches. The storage (G¢) and loss (G²) moduli as well as shear thinning properties of the mixtures except l-carrageenan-containing systems rose in the presence of starches (e.g. corn, potato and cassava starches) in either native or gelatinized state. When mixed with konjac flour, the systems of red algal polysaccharides (except for κ-carrageenan systems) with a lower molecular weight showed a greater Tgel and lower moduli on gelation by cooling. After aging at room temperature for one day, the dynamic rheological properties of the mixed polysaccharide-starch systems were examined. Pure gelatinized starch and l-carrageenan systems showed G¢ and G² maxima at ~50oC. However, the moduli of their mixtures with gelatinized corn starch decreased gradually at > 30oC. Rheological properties of weak gels were observed in the l-carrageenan-gelatinized starch mixtures. In the case of konjac flour-starch mixtures, the increasing effects of added native (20%) or gelatinized (3%) starch components on the apparent viscosities of the mixed polysaccharide solutions appeared to be greater for the starches with high amylose contents. All mixtures containing konjac flour behaved as concentrated solutions with shear thinning properties. On cooling of 1% konjac flour and gelatinized corn starch systems, the observed moduli increased linearly without notable phase transitions on gelation. After aging for 24 h and subsequent reheating on dynamic rheological measurements, the gel characteristics of these systems remained at up to 50oC, different from the results of pure konjac flour systems. As for the mixtures of other polysaccharide gums with starches, the increasing effects of gelatinized starches on the apparent viscosities of the mixed solutions were 12-75 times those of native starches, depending on the variety and concentration of gums and starches concerned. The addition of native starches did not significantly change the dilute-solution properties of guar gum (GG), locust bean gum (LBG), carboxymethyl cellulose (CMC) and gum arabic systems. This also held for the gum arabic or CMC mixtures with gelatinized starches. The appearance of gelatinized starches resulted in the weak-gel properties of GG and gellan gum. Nonetheless, the elastic-gel properties of gellan or xanthan gums were hardly influenced by the added starches. On reheating the above mixtures after aging, pure GG showed G¢ and G² maxima at ~52oC, accompanying with a minimum in tan d. The critical temperature was greater than those for the GG mixtures with starches (~35oC). Similar phenonema to the pure GG systems were also observed in pure CMC and xanthan gum systems. However, the G¢ and G² of CMC or xanthan gum with starches decreased successively with increasing reheating temperature. The moduli of pure gum arabic or its mixtures with starches increased significantly at > 35oC and maximized at ~45oC.

目 錄
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
壹、前言………………………………………………………………… 1
貳、文獻回顧…………………………………………………………… 3
一、各種多醣膠質之物性……………………………………………… 3
(一)種子多醣……………………………………………………… 3
(二)紅藻多醣……………………………………………………… 5
(三)蒟蒻膠………………………………………………………… 6
(四)微生物多醣………………………………………………….. 9
(五)纖維素衍生物………………………………………………. 13
(六)植物滲出多醣………………………………………………. 14
二、多醣混合系統之物性………………………………………………15
(一)多醣-澱粉混合系統之性………………………………….16
1.添加多醣膠質對澱粉物性之影響………………………..19
2.添加澱粉對多醣膠質物性之影響…………………………25
(二)兩種多醣膠質混合系統之物性…………………………….35
參、材料與方法……………………………………………………….39
一、材料………………………………………………………………..39
(一)樣品來源…………………………………………………...…39
(二)樣品製備方法………………………………………………...39
1.超音波處理樣品……………………………………………39
2.蒟蒻粉溶液之製備…………………………………………40
二、多醣膠值與澱粉混合系統物性之測定…………………………..40
1.快速黏度之測定……………………………………………40
2.冷卻凝膠過程流變參數分析……………………………..40
3.貯存膠體之動態黏彈性對頻率變化………………………41
4.貯存後溶液升溫之流變參數分析…………………………42
5.數據分析……………………………………………………42
肆、結果與討論………………………………………………………..43
一、紅藻多醣-澱粉混合系統物性…………………………………….43
(一)快速黏度性質………………………………………...………43
(二)流變性質之變化……...………………………………………48
二、蒟蒻膠-澱粉混合系統物性……………………………………….74
(一)快速黏度性質………………………………………………...74
(二)流變性質之變化……………………………………………...74
三、多醣膠質-澱粉混合系統物性……………………………………90
(一)快速黏度性質………………………………………………...90
(二)流變性質之變化………………………………………….…101
伍、結論………………………………………………………………119
陸、參考文獻………………………………………………………….121
圖 目 錄
圖一、 關華豆膠的理想分子結構………………………………….... 3
圖二、 刺槐豆膠的理想分子結構…………………………………… 4
圖三、 天然蒟蒻膠分子之可能結構………………………………… 7
圖四、 頻率對蒟蒻膠之貯存模量與損耗模量的響………………… 8
圖五、 天然結蘭膠的重複單位………………………………………10
圖六、 1, 2和3%結蘭膠在不同貯存溫度下貯存模量與損耗模量
的頻率依賴性………………………………………………..11
圖七、 三仙膠的主要結構…………………………………………..13
圖八、 羧甲基纖維素之結構…………………….…………………14
圖九、 凝膠網狀結構形成之機制………………………………….17
圖十、 混合多醣之凝膠結構……………………………………….18
圖十一、頻率對玉米澱粉之貯存模量與耗損模量的影響…………22
圖十二、頻率對玉米澱粉(CS)與蒟蒻膠(KM)混合物之貯存模量與損耗
模的影響………………………………………….…..23
圖十三、頻率對xyloglucan之貯存模量與耗損模量的影響….. 24
圖十四、水合膠和澱粉所成的網狀結構之假想圖………………. 27
圖十五、添加1%(w/w of starch) 之水合膠於40% (w/w) 之糯性玉米
澱粉中,8℃貯存期間貯存模量之變化…………..29
圖十六、添加1%(w/w of starch) 之水合膠於40%(w/w) 之小麥澱粉中,
8℃貯存期間貯存模量之變化…………………..30
圖十七、添加0-2%完全糊化之高雄秈七米澱粉至2.0%中性洋菜中G',
最大G'增加率(dG'/dt)和凝膠溫度(Tgel),凝膠強度和融膠溫
度(Tm)的變化……………………………….31
圖十八、添加0-2%完全糊化之高雄秈七米澱粉至2.0%κ-紅藻膠中G',
最大G'增加率(dG'/dt)和凝膠溫度(Tgel),凝膠強度和融膠溫
度(Tm) 的變化……………………………32
圖十九、添加0-2%完全糊化之高雄秈七米澱粉至2.0% ι-紅藻膠中G',
最大G'增加率(dG'/dt)和凝膠溫度(Tgel),凝膠強度和融膠
溫度(Tm)的變化化………………………...33
圖二十、中性洋菜、κ-及ι-紅藻膠與KSS7澱粉複合系統冷卻時貯存模數
(G')變化…………………………………...34
圖二十一、 結蘭膠與κ-紅藻膠及三仙膠混合系統之頻率掃描圖 38
圖Ⅰ- 1 不同攪拌速率下8%米澱粉的快速連續黏度變化………….44
圖Ⅰ- 2 攪拌速率對多醣膠質的快速連續黏度之影響……………..46
圖Ⅰ- 3 玉米澱粉添加濃度對紅藻多醣-澱粉混合系統快速視黏度
之影響………………………………………………………..49
圖Ⅰ- 4 生或糊化澱粉添加濃度對紅藻多醣-澱粉混合系統快速視
黏度之影響…………………………………………………..52
圖Ⅰ- 5 多醣膠質及其與澱粉混合系統之應變掃描圖……………..56
圖Ⅰ- 6 生澱粉懸浮液流變性質對頻率變化圖……………………..57
圖Ⅰ- 7 糊化澱粉懸浮液流變性質對頻率變化圖…………………..58
圖Ⅰ- 8 中性洋菜-澱粉混合系統懸浮液流變性質對頻率變化圖…60
圖Ⅰ- 9 κ-紅藻膠-澱粉混合系統懸浮液流變性質對頻率變化圖..61
圖Ⅰ- 10 ι-紅藻膠-澱粉混合系統懸浮液流變性質對頻率變化圖.62
圖Ⅰ- 11 λ-紅藻膠-澱粉混合系統懸浮液流變性質對頻率變化圖63
圖Ⅰ- 12 中性洋菜-蒟蒻膠混合系統於冷卻凝膠過程中流變參數
變化………………………………………………………..70
圖Ⅰ- 13 κ-紅藻膠-蒟蒻膠混合系統於冷卻凝膠過程中流變參數
變化………………………………………………………..71
圖Ⅰ- 14 κ-紅藻膠-蒟蒻膠混合系統於冷卻凝膠過程中流變參數
變化………………………………………………………. 72
圖Ⅰ- 15 紅藻多醣及其與澱粉混合系統之應變掃描圖……………73
圖Ⅰ- 16 紅藻多醣-玉米澱粉混合系統於加熱過程中流變參數
變化………………………………………………………..75
圖Ⅱ- 1 玉米澱粉添加濃度對蒟蒻膠-玉米澱粉混合系統快速視黏
度之影響……………………………………………………..76
圖Ⅱ- 2 澱粉添加濃度對蒟蒻膠-澱粉混合系統快速視黏度之
影響………………………………………………………… 79
圖Ⅱ- 3 蒟蒻膠-澱粉混合系統懸浮液流變性質對頻率變化圖….…83
圖Ⅱ- 4 蒟蒻膠-澱粉混合系統懸浮液流變性質對頻率變化圖……84
圖Ⅱ- 5 蒟蒻膠-澱粉混合系統於冷卻凝膠過程中流變參數變化…88
圖Ⅱ- 6 蒟蒻膠與糊化玉米澱粉混合系統之應變掃圖…..…………91
圖Ⅱ- 7 蒟蒻精粉-玉米澱粉混合系統於加熱過程中流變參數
變化…………………………………………………………..92
圖Ⅲ- 1 生或糊化玉米澱粉添加濃度對多醣膠質-澱粉混合系統視
黏度之影響………………………………………………… 93
圖Ⅲ- 2 生或糊化澱粉添加濃度對多醣膠質-澱粉混合系統視黏度
之影響……………………………………………………….98
圖Ⅲ- 3 生或糊化澱粉添加濃度對多醣膠質-澱粉混合系統視黏度
之影響……………………………………………………….99
圖Ⅲ- 4 關華豆膠-澱粉混合系統懸浮液流變性質對頻率變化圖..103
圖Ⅲ- 5 刺槐豆膠-澱粉混合系統懸浮液流變性質對頻率變化圖...104
圖Ⅲ- 6 結蘭膠-生或糊化澱粉混合系統懸浮液流變性質對頻率
變化圖………………………………………………………105
圖Ⅲ- 7 結蘭膠-澱粉混合系統懸浮液流變性質對頻率變化圖….106
圖Ⅲ- 8 羧甲基纖維素-生或糊化澱粉混合系統懸浮液流變性質
對頻率變化圖………………………………………………107
圖Ⅲ- 9 三仙膠-澱粉混合系統懸浮液流變性質對頻率變化圖…...109
圖Ⅲ- 10 阿拉伯膠-生或糊化澱粉混合系統懸浮液流變性質對
頻率變化圖………………………………………………110
圖Ⅲ- 11 多醣膠質-玉米澱粉混合系統之應變掃圖……………..115
圖Ⅲ- 12 多醣膠質-玉米澱粉混合系統於加熱過程中流變參數
之變化……………………………………………………117
圖Ⅲ- 13 多醣膠質-玉米澱粉混合系統於加熱過程中流變參數
之變化……………………………………………………11
表 目 錄
表一、 添加0-0.4g多醣膠質對2g玉米澱粉快速黏度之影響……20
表二、 添加0-0.4g多醣膠質對2g小麥澱粉快速黏度之影響…..21
表三、 7%玉米澱粉及玉米澱粉/水合膠混合系統在不同冷卻時間
貯存模量之比較………………………………………………..26
表四、 兩相濃度與紅藻多醣-米澱粉混合系統物性之相關係數….36
表Ⅰ- 1 攪拌速率對8.0%米澱粉的快速連續黏度之影響…………..45
表Ⅰ- 2 多醣膠值的快速連續黏度性質……………………………..47
表Ⅰ- 3 生澱粉添加濃度對紅藻多醣-玉米澱粉混合系統快速視黏
度之影響……………………………………………………..50
表Ⅰ- 4 糊化澱粉添加濃度對紅藻多醣-玉米澱粉混合系統快速視
黏度之影響…………………………………………………..51
表Ⅰ- 5 生澱粉添加濃度對紅藻多醣-澱粉混合系統快速視黏度之
影響………………………………………………………….53
表Ⅰ- 6 糊化澱粉添加濃度對紅藻多醣-澱粉混合系統快速視黏度
之影響……………………………………………………….54
表Ⅰ- 7 紅藻多醣-生或糊化澱粉混合系統於頻率1.0 Hz之流變
參數………………………………………………………….65
表Ⅰ- 8 紅藻多醣-生或糊化澱粉混合系統於頻率10 Hz之流變
參數………………………………………………………….66
表Ⅰ- 9 生或糊化澱粉紅藻多醣混合系統對頻率之依賴性………..67
表Ⅱ- 1 生澱粉添加濃度對蒟蒻膠-玉米澱粉混合系統快速視黏度
之影響………………………………………………………..77
表Ⅱ- 2 糊化澱粉添加濃度對蒟蒻膠-玉米澱粉混合系統快速視黏
度之影響…………………………………………………….78
表Ⅱ- 3 生澱粉添加濃度對蒟蒻膠-澱粉混合系統快速視黏度之
影響………………………………………………………….80
表Ⅱ- 4 糊化澱粉添加濃度對蒟蒻膠-澱粉混合系統快速視黏度之
影響……………………………………………..……………81
表Ⅱ- 5 生或糊化澱粉-蒟蒻膠混合系統於頻率1.0 Hz之動態流變
參數…………………………………………………………..85
表Ⅱ- 6 生或糊化澱粉-蒟蒻膠混合系統於頻率10 Hz之動態流變
參數………………………………………………………….86
表Ⅱ- 7 生或糊化澱粉-蒟蒻膠混合系統對頻率之依賴性………..87
表Ⅱ- 8 蒟蒻膠與未經或經超音波處理之紅藻多醣及蒟蒻膠與玉米澱
粉之混合系統於冷卻凝膠過程中20℃及80℃之動態流變參
數……………………………………………………..89
表Ⅲ- 1 生澱粉添加濃度對多醣膠質-玉米澱粉混合系統視黏度之
影響…………………………………………………………..94
表Ⅲ- 2 糊化澱粉添加濃度對多醣膠質-玉米澱粉混合系統視黏度
之影響……………………………………………………….95
表Ⅲ- 3 膠質-玉米澱粉混合系統視黏度對澱粉濃度依賴性………96
表Ⅲ- 4 生澱粉添加濃度對多醣膠質-澱粉混合系統視黏度之
影響…………………………………………………………100
表Ⅲ- 5 糊化澱粉添加濃度對多醣膠質-澱粉混合系統視黏度
之影響………………………………………………………102
表Ⅲ- 6 生或糊化澱粉-結蘭膠混合系統於頻率1.0 Hz之動態流
變參數………………………………………………………111
表Ⅲ- 7 生或糊化澱粉-多醣膠質混合系統於頻率10 Hz之動態
流變參數……………………………………………………112
表Ⅲ- 8 生或糊化澱粉-多醣膠質混合系統對頻率之依賴性……..114

陸、參考文獻
廖志倫:脫色仙草葉膠與澱粉間凝膠作用之研究。碩士論文。靜宜大學食品營養學系 (2000).
賴鳴鳳:臺灣產海藻多醣結構、構形、分子量大小及其流變性質之相關性。博士論文。臺灣大學食品科技研究所 (1995).
賴鳴鳳、郭孟怡、李錦楓、呂政義:紅藻多醣濃度對其凝膠相變與流變特性之影響 第一報 對凝膠特性之影響。食品科學,23: 554-566 (1996).
賴鳴鳳、郭孟怡、李錦楓、呂政義:超音波與熱對紅藻多醣化學與凝膠性質之影響。食品科學,23: 717-729 (1996).
賴鳴鳳、郭孟怡、李錦楓、呂政義: 紅藻多醣濃度對其凝膠相變與流變特性之影響 第二報 對凝膠與融膠溫度之影響。中國農業化學會誌,35: 173-183 (1997).
賴鳴鳳、廖樹杰、呂政義:水溶性蒟蒻膠萃取與分子性質之探討。食品科學,26: 456-467 (1999).
Ainsworth PA, Blanshard JMV. 1979. The effect of heat processing on the structure and rheological properties of carrageenan gels. J Food Techn 14: 141-147.
Alloncle M, Doublier JL. 1991. Viscoelastic properties of maize starch/hydrocolloid pasts and gels. Food Hydrocoll 5(5): 455-467.
Annable P, Fitton MG, Harris B, Phillips GO, Williams PA. 1994. Phase behavior and rheology of mixed polymer systems containing starch. Food Hydrocoll 8(3-4): 351-359.
Bagley EB, Christiason DD. 1982. Swelling capacity of starch and its relationship to suspension viscosity effect of cooking time, temperature and concentration. J Text Stud 13(1): 115-126.
Bahnassey Y, Breene WM. 1994. Rapid visco-analysis (RVA) pasting profiles of wheat, corn, waxy corn, tapioca and amaranth starchs (A. hypochondriacus and A. cruentus) in the presence of konjac flour, gellan, guar, xanthan and locust bean gums. Starch/Stärke 46(4): 134-141.
Biliaderis CG. 1992. Characterization of starch networks by small strain dynamic rheometry. in: Alexander RJ, Zobel HF editors. Development in Carbohydrate Chemistry. Minnesota: The American Association of Cereal Chemistry. P 87.
Biliaderis CG, Arvanitoyannis I. 1997. Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch/Stärke 49(7-8): 278-283.
Biliaderis CG, Zawistowski J. 1990. Viscoelastic behavior of aging starch gels: effects of concentration, temperature, and starch hydrolyzates on network properties. Cereal Chem 67(3): 240.
Cairns P, Miles MJ, Morris VJ, Brownsey GJ. 1987. X-ray fiber-diffraction sturies of synergistic, binary polysaccharide gels. Carbohydr Res 160: 411-423.
Campos DT, Steffe JF, Ng PKW. 1997. Rheological behavior of undeveloped and developed wheat dough. Cereal Chem 74: 489-494.
Clark AH, Ross-Murphy SB. 1987. Sturcture and mechanical properties of biopolymers gels. Adv Polym Sci 83: 57-192 .
Clark AH, Gidley MJ, Richardson RK, Ross-Morphy SB. 1989. Rheological studies of aqueous amylose gels: the effects of chain length and concentration on gel modulus. Marcomolecules 22(1): 346-351.
Clark AH. 1992. Gels and gelling. In: Hartel RW, Schwartzberg HG editors. Physical Chemistry of Food. New York: Marcel Dekker, Inc. p 263-305.
Dea ICM, Morris ER, Rees DA, Welsh EJ, Barnes HA, Price J. 1977. Associations of like and unlike polysaccharides: mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydr Res 57: 249-272.
Doublier JL, Choplin L. 1989. A rheological description of amylose gelation. Carbohydr Res 193: 215.
Doublier JL, Lamas G, Le Meur M. 1987. A rheological investigation of cereal starch pastes and gels. Carbohydr Polym 7: 251-275.
Eidam D, Kulicke WM. 1995. Formation of mazie starch gels selectively regulated by the addition of hydrocolloids. Starch/Stärke 47(10): 378-384.
Eliasson AC, Bohlin L. 1982. Rheological properties of concentrated wheat starch gels. Starch/Stärke 34: 267-271.
Ellis HS, Ring SG, Whittam MA. 1988. Time denpendent changes in the size and volume of gelatinized starch granules on storage. Food Hydrocoll 2(4): 321-328.
Ellis HS, Ring SG, Whittam MA. 1989. A comparison of the viscous behavior of wheat and maize starch pastes. J Cereal Sci 10(1): 33-44.
Evans ID, Lips A. 1992. Viscoelasticity of gelatinized starch dispersions. J Text Stud 23(1): 69-86.
Fernandes PB, Goncalves MP, Doublier JL. 1992. Effect of galactomannan addition on the thermal behaviour of κ-carrageenan gels. Carbohydr Polym 19: 261-269.
Fernandes PB, Figueiredo, AA. 1995. Effect of mesquite seed gum addition to kappa-carrageenan or xanthan gum mixed systems. Food Hydrocoll 9(4): 251-255.
Ferrero C, Martino EH, Zaritzky NE. 1994. Corn starch-xanthan gum interaction and its effect on the stability during storage of gelatinized suspension. Starch/Stärke 46(8): 300-308.
Garnier C, Schorsch C, Doublier JL. 1995. Phase separation in dextran/locust bean gum mixtures. Carbohydr Polym 28: 313-317.
Glicksman M. 1982. Food applications of gums. In: Lineback DA, Inglett GE, editors. USA: AVI publishing Co Westport CT. p 270-295.
Igoe RS. 1982. Hydrocolloid interactions useful in food systems. Food Techn. April 72-74.
Jasson PE, Kenne L, Lindberg B. 1975. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res 57: 249-272.
Kulicke WM, Reinhardt U. 1993. Viscous and elastic properties of carboxymethylcellulose and CMC/polymer mixturees. Polym Mat Sci Eng 69: 491-492.
Kulicke WM, Eidam D, Kath F, Kix M, Kull AH. 1996. Hydrocolloids and rheology: regulation of viscoelastic characteristics of waxy rice starch in mixtures with galactomannans. Starch/Stärke 48(3): 105-114.
Lai VMF, Li CF, Lii CY. 1994. Characterization and thermal behavior of six sulphated polysaccharides from seaweeds. Food hydrocoll 8: 215-232.
Lai VMF, Lii CY. 1997. Rheological and thermal characteristics of gel structure from various agar fractions. Int J Bio Macromolecules 21: 123-130.
Lai VMF, Huang AL, Lii CY. 1999. Rheological properties and phase transition of red algal polysaccharide-starch composites. Food hydrocoll 13: 409-418.
Lii CY, Shao YY, Tseng KH. 1995. Gelation mechanism and rheological properties of rice starch. Cereal Chem 72(4): 393-400.
Maeda MH, Shimahara H, Sugiyama N. 1980. Detail examination of the branched structure of konjac glucomannan. Agric Biol Chem 44: 245-252.
Maekaji K. 1974. The mechanism of gelation of konjac mannan. Agric Biol Chem 38: 315-321.
Matsuhashi T. 1992. Agars. In: Harris P, editors. Food gels. 1st ed. London : Elsevier. p 1-51.
Millane RP, Hendrixson TL. 1994. Crystal structures of mannan and glucomannans. Carbohydr Polym 25: 245-251.
Mita T. 1992. Structure of potato starch pastes in the aging process by the measurement of their dynamic moduli. Carbohydr Polym 17(4): 269-276.
Miyoshi, E., Takaya, T., and Nishinari, K. 1994. Gel-sol transition in gellan gum solutions. Ι. Rheeological studies on the effects of salts. Food Hydrocoll 8(6): 505-527.
Mitchell JR. 1979. Rheology of polysaccharides solutions and gels. In: Blanshard JMV, Mitchell JR editors. Polysaccharides in Foods. Boston: Butterworth. p 51-71.
Morris ER. 1983. Rheology of hydrocolloid. In: Phillips GO, Wedlock DJ, Williams PA editors. Gums and Stabilizers for Food Industry 2. Oxford: Pergamon Press. p 57.
Morris VJ. 1986. Multicomponents gels. In: Phillips GO, Wedlock DJ, Williams PA editors. Gums and Stabilizers for Food Industry 3,1 st ed. London and New York: Elsevier Applied Science. p 87-99.
Morris VJ. 1990. Starch gelation and retrogradation. Trends in Food Sci and Techno 1(1): 2-6.
Nijenhuis K. 1997. Thermoreversible network. Adv Polym Sci 130(51): 126.
Nishinari K. 1997. Rheological and DSC study of sol-gel transition in aqueous dispersions of industrially important polymers and colloids. Colloid Polym Sci 275: 1093-1168.
Nishinari K, Miyoshi E, Takaya T, Williams PA. 1996. Rheological and DSC studies on the interaction between gellan gum and konjac glucomannan. Carbohydr Polym 30: 193-207.
Nishinari K, Watase M, Milas M. 1996. Characterization and properties of gellan-κ-carrageenan mixed gels. Food Hydrocoll 10(3): 277-283.
Nishinari K, Williams PA, Phillips GO. 1992. Review of the physico-chemical characteristics and properties of konjac mannan. Food Hydrocoll 6: 199-222.
Oakenfull DG, Scott A. 1988. Size and stability of junction zone in gels of iota and kappa carrageenan. In: Phillips GO, Williams PA, Wedlock DJ, editors. Gums and Stabilisers for the food industry. 4th ed. Washington DC: IRL press. p 127-134.
Parker A, Brigand G, Miniou C, Trespoey A, Vallee P. 1993. Rheology and fracture of mixed ι- and κ-carrageenan gels: two-step gelation. Carbohydr Polym 20: 253-262.
Phillips GO, Williams PA. 1993. Gums properties of individual gums. In: Macrae P, Robinson RK, Sadler MJ, editors.
Encyclopaedia of Food Science, Food technology and Nutrition. San Diego: Academic Press . p 2267-2275.
Rayment P, Ross-Murphy SB, Eills PR. 1995. Rheological properties of guar galactomannan and rice starch mixture-I. Steady shear measurement. Carbohydr Polym 28: 121-130.
Ring SG. 1987. Molecular interactions in aqueous solutions of the starch polysaccharides: a review. Food hydrocoll 1(5-6): 449-454.
Rodríguez-Hernández AI, Tecante A. 1999. Dynamic viscoelastic behavior of gellanι-carrageenan and gellan-xanthan gels. Food Hydrocoll 13: 59-64.
Sanderson GR. 1992. Gellan gum. In: Harris P, editors. Food gels. 3rd ed. London : Elservier. P 201-232.
Southwick JG, Jamieson AM, Blackwell J. 1983. Comformation of xanthan dissolved in aqueous urea and sodium chloride solutions. Carbohydr Res 99: 117-127.
Stanley NF. 1992. Carrageenans. In: Harris P, editors. Food gels. 3rd ed. London : Elservier. p 79-119.
Sudhakar V, Singhal RS, Kulkarni PR. 1996. Starch-gum interactions: nutritional and technological implications. Intl J Food Sci Nutri 47(2): 117-129.
Svegmark K, Hermansson AM. 1991a. Changes induced by shear and gel formation in the viscoelastic behavior of potato, wheat and maize starch dispersions. Carbohydr Polym 15: 151-169.
Svegmark K, Hermansson AM. 1991b. Distribution of amylose and amylopectin in potato starch paste: effect of heating and shearing. Food Struct 10(2): 117-129.
Tako M, Nakamura S. 1985. Synergistic interaction between xanthan and guar gum. Carbohydr Res 138: 207-213.
Thomas WR. 1997. Konjac gum. In: Imeson A, editors. Thickening and gelling agents for food. 8th ed. London: Blackie Academic & Professional. p 169-179.
Williams PA, Phillips GO. 1995. Interaction in mixed polysaccharide systems. In: Stephen AM, editors. Food polysaccharides and their applications. 14th ed. New York: Marcel Dekker. p 463-500.
Yoshimura M, Nishinari K. 1999. Dynamic viscoelastic study on the gelation of konjac glucommannan with different molecular weights. Food Hydrocoll 13(3): 227-233.
Yoshimura M, Takaya T, Nishinari K. 1996. Effects of konjac-glucomannan on the gelatinization and retrogradation of corn starch as determined by rheology and differential scanning calorimetry. J Agric Food Chem 44(10): 2970-2976.
Yoshimura M, Takaya T, Nishinari K. 1998. Rheological studies on mixtures of corn starch and konjac-glucomannan. Carbohydr Polym 35(1-2): 71-79.
Yoshimura M, Takaya T, Nishinari K. 1999. Effects of xyloglucan on the gelatinization and retrogradation of corn starch as studied by rheology and differential scanning calorimetry. Food Hydrocoll 13(2): 101-111.
Zecher D, Gerrish T. 1992. Cellulose derivatives. In: Harris P, editors. Food gels. 3rd ed. London : Elservier. p 60-85.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top