跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/17 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏強
論文名稱:桌上型電腦塑膠物質熱裂解資源回收之研究
論文名稱(外文):Study on the Pyrolysis of Waste Plastics in Personal Computer
指導教授:吳照雄
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:德文
論文頁數:116
中文關鍵詞:熱裂解丙烯腈-丁二烯-苯乙烯(ABS) 樹脂活化能頻率因子反應級數
外文關鍵詞:PyrolysisAcrylonitrile-Butadiene-Styrene resinActivation energyfrequency factorReaction order
相關次數:
  • 被引用被引用:3
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以探討桌上型廢電腦監視器之塑膠物質熱裂解為主。廢電腦外殼成分主要為丙烯腈(acrylonitrile)、丁二烯(butadiene)及苯乙烯(styrene)三成分之共聚合物(ABS),經由元素分析結果顯示,碳、氫與氮所佔的重量百分比分別為84.32、7.71與7.57 ﹪。
動力分析方面,利用不同的升溫速率(分別為2、5及10 ℃/min),探討廢電腦塑膠物質在氮氣中熱裂解之情形,由質量消失曲線計算,以求得活化能E、頻率因子A及反應級數n。由實驗數據求得動力參數值分別為E=40.3 kcal/mol,A=5.31×1011 1/min,n=1,ABS樹脂在氮氣中熱裂解可以一個總反應方程式表示:
dX/dt=A.exp(-E/RT)(1-X)
其中
X:轉化率 t:時間
R:氣體常數(1.987×10-3 kcal/mol-K) T:絕對溫度(K)
產物分析方面,廢電腦塑膠物質在氮氣中400 ℃裂解產物百分比分別為氣體約14 %,粗裂解油約75 %及固體殘餘物約11 %。氣體主要產物為丙烷與少量之toluene、ethyl benzene與styrene等有機化合物。粗裂解油為一深咖啡色帶有刺鼻味之黏稠狀油類液體。經由分餾後之產物主要為甲苯、乙苯與苯乙烯,約佔油品總量的60-70 %。固體殘餘物主要成分為碳元素,約佔83 %。
In Taiwan, there are a lot of waste computers produced every year, and most of them are treated by incineration and landfill. These waste computers contain various plastics which produced by polymers. The plastics may pollute our environment, if they are not disposed properly. In order to decrease the environmental problems and recover the valuable natural resources, the method pyrolysis was used in this study to recover the reusable plastics contained in the waste computers.
In general, the plastics of waste computers are composed of acrylonitrile-butadiene-styrene terpolymer (ABS resin). The principal elements in ABS was analysed by Elemental Analyzer (EA). The results indicated that the percentages of carbon,hydrogen and nitrogen were 84.32 ﹪、7.71 ﹪and 7.57 ﹪, respectively. The analysis of kinetics of ABS pyrolysis in nitrogen was performed under the heating rates of 2, 5, and 10 K/min, respectively. The kinetic parameters were obtained by the weight-lossing curves. The activation energy (E), frequency factor (A), and reaction order (n) are 40.3 kcal/mol, 5.32×1011 1/sec, and 1, respectively. Thus, the pyrolysis of ABS resin can be described by the overall rate equations as:
dX/dt=5.32×1011exp(-40.3/(1.987×10-3T))(1-X)
Where X is the conversion, t is the reaction time(min), T is the reaction temperature(K), R is universal gas constant(1.987×10-3 kcal/mol-K).
For the analysis of pyrolysis products, the main gas product is propane. After distilling, the most important oil products are toluene, ethylbenzene and styrene with a total yield of 70 % by weight.
目錄
封面內頁 頁次
簽名頁
授權書……………………………………………………………. iii
中文摘要…………………………………………………………. iv
英文摘要…………………………………………………………. v
誌謝………………………………………………………………. vi
目錄………………………………………………………………. vii
圖目錄……………………………………………………………. x
表目錄………………………………………………………….... xiii
符號說明…………………………………………………………. xv
第一章 緒論……………………………………………………. 1
1.1 研究緣起…………………………………………………… 1
1.2 研究目的…………………………………………………… 3
1.3 研究內容與方法…………………………………………… 5
第二章 文獻回顧與基本理論…………………………………. 7
2.1 ABS樹脂性質之介紹……………………………………. 8
2.2 ABS熱裂解之相關研究…………………………………... 9
2.2.1 ABS熱裂解之動力分析……………………………….. 9
2.2.2 ABS熱裂解之產物分析……………………………….. 12
2.3 動力學基本理論分析……………………………………… 20
第三章 實驗設備與分析方法…………………………………. 30
3.1 實驗設備與材料…………………………………………… 30
3.1.1 熱重量分析設備(TGA)及熱裂解爐系統……………... 30
3.1.2 實驗操作條件………………………………………….. 36
3.1.3 實驗步驟……………………………………………….. 38
3.1.4 採樣方法……………………………………………….. 40
3.1.5液體產物分餾…………………………………………….. 42
3.2 分析方法…………………………………………………… 42
3.2.1 三成分分析…………………………………………….. 42
3.2.2 元素分析……………………………………………….. 46
3.2.3 反應熱量測(DSC)分析………………………………… 47
3.2.4 氣體產物成分分析…………………………………….. 48
3.2.5 液體產物成分分析…………………………………….. 51
3.2.6 液體產物燃燒熱分析………………………………….. 52
3.2.7 液體產物黏度分析…………………………………….. 53
3.2.8 固體殘餘物固定碳分析……………………………….. 54
第四章 結果與討論……………………………………………. 56
4.1樣品成份分析………………………………………………... 56
4.1.1 三成分分析……………………………………………… 56
4.1.2 元素分析………………………………………………… 56
4.1.3 無氧裂解反應熱量測…………………………………… 56
4.2 ABS樹脂反應動力模式之建立…………………………….. 59
4.3 氣體產物分析……………………………………………….. 67
4.3.1 總氣體採樣分析………………………………………… 67
4.3.2 400 ℃恆溫裂解氣體採樣分析……………………….. 69
4.4 液體產物分析……………………………………………… 69
4.4.1 裂解廢電腦塑膠物質固、液與氣體百分比組成分析… 69
4.4.2 粗裂解油之元素分析………………………………….. 75
4.4.3 粗裂解油分餾後之產物分析………………………….. 75
4.4.4 粗裂解油分餾後之產物黏度分析…………………….. 90
4.4.5 液體產物燃燒熱分析………………………………….. 90
4.5 固體殘餘物分析…………………………………………… 93
4.5.1 固體殘餘物之成分分析……………………………….. 93
4.5.2 固體殘餘物之固定碳分析…………………………….. 93
4.5.3 固體殘餘物之掃描式電子顯微鏡(SEM)分析………... 95
第五章 結論……………………………………………………. 99
5.1 結論………………………………………………………… 99
5.2 建議………………………………………………………… 101
參考文獻…………………………………………………………. 102
附錄A ABS樹脂在空氣中反應之情形………………………. 106
附錄B 95無鉛汽油及高級柴油之成分分析…………………. 109
附錄C 相關聚合物之結構式………………………………….. 114
附錄D 爐體溫度與加熱速率之關係圖………………………. 115
附錄E 標準偏差……………………………………………….. 116
1.www.epa.gov.tw
2.www.niea.gov.tw
3.Ali, K., Simsek, E. H., Burhanettin, C. and Ali, Y., “Thermal degradation of polystyrene wastes in various solvents,” Journal of Analytical and Applied Pyrolysis, Vol. 62, PP.273-280, (2002).
4.Cornelia, V., Pakdel, H., Mihai, B., Onu, P., Darie, H. and Ciocalteu, S., “Thermal and catalytic decomposition of mixed plastics,” Journal of Analytical and Applied Pyrolysis, Vol. 57, PP.287-303, (2001).
5.Chen, F. Z. and Qian, J. L., “Studies on the thermal degradation of polybutadiene,” Fuel Processing Technology, Vol. 67, PP.53-60, (2000).
6.Day, M., Cooney, J. D. and Touchette, B. C., “Pyrolysis of mixed plastics used in the electronics industry,” Journal of Analytical and Applied Pyrolysis, Vol. 52, PP.199-224, (1999).
7.Dong, D., Tasaka, S., Aikawa, S., Kamiya, S., Inagaki, N. and Inoue, Y., “The thermal degradation of acrylonitrile-butadiene-styrene terpolymer in bean oil, ” Polymer Degradation and Stability, Vol. 73, PP.319-326, (2001).
8.Gersten, J., Fainberg, V., Garbar A., Hetsroni, G. and Shindler Y., “Utilization of waste polymers through one-stage low temperature pyrolysis with oil shale,” Fuel, Vol. 78, PP.987-990, (1999).
9.Howell, B. A., Cui, Y. and Priddy, D. B., “Assessment of the thermal degradation characteristics of isomeric poly(styrene) using TG, TG/MS and TG/GC/MS,” Thermochimica acta, Vol. 396, PP.167-177, (2003).
10.Kaminsky, W. and Kim, J. S., “Pyrolysis of mixed plastics into aromatic,” Journal of Analytical and Applied Pyrolysis, Vol. 51, PP.127-134, (1999).
11.Katsuhide, M., Hirano, Y., Sakata, Y. and Uddin, M. A., “Basic study on a continuous flow reactor for thermal degradation of polymers,” Journal of Analytical and Applied Pyrolysis, Vol. 65, PP.71-90, (2002).
12.Kiran, N., Ekinci, E. and Snape, C. E. “Recyling of plastic wastes via pyrolysis,” Resources Conservation & Recycling, Vol. 29, PP.273-283, (2000).
13.Lee, C. H., Chang, S. L., Wang, K. M. and Wen, L. C., “Management of scrap computer recycling in Taiwan,” Journal of Hazardous Materials, Vol. 73, PP.209-220, (2000).
14.Lee, S. Y., Yoon, J. H., Kim, J. R. and Park, D.W., “Catalytic degradation of polystyrene over natural clinoptilolite,” Polymer Degradation and Stability, Vol. 74, PP.297-305, (2001).
15.Mihai, B., Uddin, M. A., Akinori, M., Yusaku, S. and Cornelia, V., “The role of temperature program and catalytic system on the quality of acrylonitrile—butadiene—styrene oil,” Journal of Analytical and Applied Pyrolysis, Vol. 63, PP.43-57, (2002).
16.Nishizaki, H., Yoshida, K. and Wang, J. H., “Comparative study of various methods for thermogravimetric analysis of polystyrene,” Journal of Applied Polymer Science, Vol.25, PP.2869-2877(1980).
17.Schnabel, W., Levchik, G. F., Wilkie, C. A., Jiang, D.D., Levchik, S.V., “Thermal degradation of polystyrene poly(1,4-butadiene) and copolymers of styrene and 1,4-butadiene irradiated under air or argon with 60Co-γ-rays”, Polymer Degradation and Stability, Vol. 63, PP.365-375, (1999).
18.Shun, D., Bae, D. H., Cho, S. H. and Han, K. H., “Bench scale fluidized bed pyrolysis of waste ABS resin,” Korea Institute of Energy Research, PP.305-343.
(http://wire0.ises.org/wire/doclibs/KoreaConf.nsf/0/39a1cfb8d86b6af9c12565a0004e6405?OpenDocument)
19.Solpan, D. and Guven, O., “The thermal stability of allyl alcohol with acrylonitrile and methyl methacrylate,” Polymer Degradation and Stability, Vol. 60, PP.367-370, (1998).
20.Sorum, L., Gronli, M. G. and Hustad, J. E., “Pyrolysis characteristics and kinetics of municipal solid wastes,” FUEL, Vol. 80, PP.1217-1227, (2001).
21.Suzuki, M. and Wilkie, C. A., “The thermal degradation of acrylonitrile—butadiene—styrene terpolymer as study by TGA/FTIR,” Polymer Degradation and Stability, Vol. 47, PP.217-221, (1995a).
22.Suzuki, M. and Wilkie, C. A., “The thermal degradation of acrylonitrile—butadiene—styrene terpolymer grafted with methacrylic acid,” Polymer Degradation and Stability, Vol. 47, PP.223-228, (1995).
23.Thomas, J. X. and Wilkie, C. A., “Thermal degradation of poly(styrene-g-acrylonitrile),” Polymer Degradation and Stability, Vol. 56, PP.109-113, (1997).
24.Ukei, H., Hirose, T., Horikawa, S., Takai, Y., Taka, M., Azuma, N. and Ueno, A., “Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts,” Catalysis Today, Vol. 62, PP.67-75, (2000).
25.Yang, M. H., “The thermal degradation of acrylonitrile—butadiene — styrene terpolymer under various gas condition,” Polymer testing, Vol.19, PP.105-110, (2000).
26.Zhibo, Z., Nishio, S., Morioka, Y., Ueno A,., Ohkita, H., Tochihara, Y., Mizushima, T. and Kakuta, N., “Thermal and chemical recycle of waste polymers,” Catalysis Today, Vol. 29, PP.303-308, (1996).
27.石化工會,“石化工業”,第二十三卷第九期,(2002)。
28.楊思廉, ”新材料塑膠” ,高立圖書公司,(1983)。
29.孫逸民,陳玉舜,趙敏勳,謝明學,劉興鑑,”儀器分析”,(2000)。
30.劉玉芬, ”氧氣對鋁箔包熱裂解之影響”,國立台灣大學環境工程學研究所碩士論文,(1999)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top